answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
allsm [11]
2 years ago
11

An automobile approaches a barrier at a speed of 20 m/s along a level road. The driver locks the brakes at a distance of 50 m fr

om the barrier. What minimum coefficient of kinetic friction is required to stop the automobile before it hits the barrier?
Physics
1 answer:
AleksAgata [21]2 years ago
5 0

Answer:

μ = 0.408

Explanation:

given,

speed of the automobile (u)= 20 m/s

distance = 50 m

final velocity  (v) = 0 m/s

kinetic friction = ?

we know that,

v² = u² + 2 a s

0 = 20² + 2 × a × 50

a = \dfrac{400}{2\times 50}

a = 4 m/s²

We know

F = ma = μN

ma = μ mg

a = μ g

\mu = \dfrac{a}{g}

\mu = \dfrac{4}{9.81}

μ = 0.408

hence, Kinetic friction require to stop the automobile before it hit barrier is 0.408

You might be interested in
A stationary particle of charge q = 2.1 × 10-8 c is placed in a laser beam (an electromagnetic wave) whose intensity is 2.9 × 10
alisha [4.7K]
(a) The intensity of the electromagnetic wave is related to the amplitude of the electric field by
I= \frac{1}{2} c \epsilon_0 E^2
where
I is the intensity
c is the speed of light
\epsilon_0 is the electric permittivity
E is the amplitude of the electric field

By substituting the numbers of the problem and re-arranging the equation, we can find E:
E= \frac{2 I}{c \epsilon_0} = \frac{2 ( 2.9 \cdot 10^3 Wm^{-2})}{(3 \cdot 10^8 m/s)(8.85 \cdot 10^{-12} Fm^{-1})} =2.2 \cdot 10^6 N/C

Now that we have the intensity of the electric field, we can calculate the electric force on the charge:
F=qE=(2.1 \cdot 10^{-8} C)(2.2 \cdot 10^6 N/C)=0.046 N

(b) We can calculate the amplitude of the magnetic field starting from the amplitude of the electric field:
B= \frac{E}{c}= \frac{2.2 \cdot 10^6 N/C}{3 \cdot 10^8 m/s}=7.3 \cdot 10^{-3} T

The magnetic force is given by
F=qvB \sin \theta
where v is the particle's speed, B the magnetic field intensity and \theta the angle between B and v.
In this case the charge is stationary, so v=0, and so the magnetic force is zero: F=0.

(c) The electric force has not changed compared to point (a), because it does not depend on the speed of the particle, so we have again F=0.046 N.

(d) This time, the particle is moving with speed v=3.7 \cdot 10^4 m/s, in a direction perpendicular to the magnetic field (so, the angle \theta is 90^{\circ}), and so by using the intensity of the magnetic field we found in point (b), we can calculate the magnetic force on the particle:
F=qvB \sin \theta = (2.1 \cdot 10^{-8}C)(3.7 \cdot 10^4 m/s)(7.3 \cdot 10^{-3} T)(\sin 90^{\circ} )=
=5.7 \cdot 10^{-6} N
5 0
2 years ago
Two resistors ( 3 ohms & 6 ohms) in a series circuit with a power supply = 12 volts. The current through resistor 6 ohms is
Scorpion4ik [409]

In a series circuit . . .

-- The total resistance is the sum of the individual resistors.

-- The current is the same at every point in the circuit.

The total resistance in this circuit is (3Ω + 6Ω )  =  9Ω

The current at every point is (V/R) = (12v / 9Ω ) = <em>1.33 A</em> .

Pick choice<em> (a)</em>.

6 0
1 year ago
A negatively charged glass rod is brought near a neutral table tennis ball. What will happen to the neutral table tennis ball?.
Zina [86]

The neutral table tennis ball will become polarized, with positive charges toward the glass rod. The correct answer between all the choices given is the last choice or letter D. I am hoping that this answer has satisfied your query and it will be able to help you, and if you would like, feel free to ask another question.

7 0
2 years ago
Read 2 more answers
A particle of mass m= 2.5 kg has velocity of v = 2 i m/s, when it is at the origin (0,0). Determine the z- component of the angu
melomori [17]

Answer:

please read the answer below

Explanation:

The angular momentum is given by

|\vec{L}|=|\vec{r}\ X \ \vec{p}|=m(rvsin\theta)

By taking into account the angles between the vectors r and v in each case we obtain:

a)

v=(2,0)

r=(0,1)

angle = 90°

L=(2.5kg)(1)(2\frac{m}{s})sin90\°=5.0kg\frac{m}{s}

b)

r=(0,-1)

angle = 90°

L=(2.5kg)(1)(2\frac{m}{s})sin90\°=5.0kg\frac{m}{s}

c)

r=(1,0)

angle = 0°

r and v are parallel

L = 0kgm/s

d)

r=(-1,0)

angle = 180°

r and v are parallel

L = 0kgm/s

e)

r=(1,1)

angle = 45°

L = (2.5kg)(2\frac{m}{s})(\sqrt{2})sin45\°=5kg\frac{m}{s}

f)

r=(-1,1)

angle = 45°

the same as e):

L = 5kgm/s

g)

r=(-1,-1)

angle = 135°

L=(2.5kg)(2\frac{m}{s})(\sqrt{2})sin135\°=5kg\frac{m}{s}

h)

r=(1,-1)

angle = 135°

the same as g):

L = 5kgm/s

hope this helps!!

4 0
2 years ago
At the normal boiling temperature of iron, TB = 3330 K, the rate of change of the vapor pressure of liquid iron with temperature
Margaret [11]

The molar latent enthalpy of boiling of iron at 3330 K is  ΔH = 342 \times 10^3 J.

<u>Explanation:</u>

Molar enthalpy of fusion is the amount of energy needed to change one mole of a substance from the solid phase to the liquid phase at constant temperature and pressure.

                      d ln p = (ΔH / RT^2) dt

                   (1/p) dp = (ΔH / RT^2) dt

                    dp / dt = p (ΔH / RT^2) = 3.72 \times 10^-3

                  (p) (ΔH) / (8.31) (3330)^2 = 3.72 \times 10^-3

                          ΔH = 342 \times 10^3 J.

8 0
2 years ago
Read 2 more answers
Other questions:
  • Consider a father pushing a child on a playground merry-go-round. the system has a moment of inertia of 84.4 kg · m2. the father
    12·2 answers
  • A na+ ion moves from inside a cell, where the electric potential is -72 mv, to outside the cell, where the potential is 0 v. wha
    12·2 answers
  • A point charge q1=−4.00nc is at the point x=0.600 meters, y=0.800 meters, and a second point charge q2=+6.00nc is at the point x
    11·2 answers
  • When boating in shallow areas or seagrass beds, you see a mud trail in your wake where your boat has churned up the bottom. If y
    5·1 answer
  • A cyclist going downhill is accelerating at 1.2 m/s2. If the final velocity of the cyclist is 16 m/s after 10 seconds, what is t
    11·2 answers
  • An experiment to measure the speed of light uses an apparatus similar to Fizeau's. The distance between the light source and the
    9·1 answer
  • 13. An aircraft heads North at 320 km/h rel:
    5·1 answer
  • At room temperature, a typical person loses energy to the surroundings at the rate of 62 W. If this energy loss has to be made u
    10·1 answer
  • The same fluid flows through four different branching pipes. It enters each pipe from the left with the same speed, v0, and flow
    13·1 answer
  • the container is filled with liquid. the depth of liquid is 60 cm. if it is exerting the pressure of 2000pa. calculate the densi
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!