m = mass = 5 kg
= initial velocity = 100 m/s
= final velocity = ?
I = impulse = 30 Ns
Using the impulse-change in momentum equation
I = m(
-
)
30 = 5 (
- 100)
= 106 m/s
Answer:
Da=(1/4)Db
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²
When s = Da, t = t

When s = Db, t = 2t

Dividing the two equations

Hence, Da=(1/4)Db
Answer:
KE= 1/2mv²
Explanation:
The kinetic energy of a body is the energy possessed by virtue of the body in motion
Given the parameters
m which is the mass of the body
v which is the velocity of the body too
K.E = kinetic energy
The expression for the kinetic energy of a body is given as
KE= 1/2mv²
Answer:
The time to boil the water is 877 s
Explanation:
The first thing we must do is calculate the external resistance (R) of the circuit, from the description we notice that it is a series circuit, by which the resistors are added
V = i (r + R)
We replace we calculate
r + R = V / i
R = v / i - r
R = 10/12 -0.04
R = 0.793 Ω
We calculate the power supplied
P = V i = I² R
P = 12² 0.793
P = 114 W
This is the power dissipated in the external resistance
We use the relationship, that power is work per unit of time and that work is the variation of energy
P = E / t
t = E / P
t = 100 10³/114
t = 877 s
The time to boil the water is 877 s
Answer:
a) 4.485 kg b) 3.94 kg
Explanation:
since the maximum tension the line can stand is 44 N and for question a the speed is constant (acceleration must be zero since the velocity or speed is not changing), F(tension) = mass * acceleration due to gravity (g) .
44 = m * 9.81m/s^2
m = 44/9.81 = 4.485kg
b) F(tension) = ma + mg ( where a is the acceleration of the body and g is the acceleration of the gravity)
44 = m (a +g)
44 = m (1.37 + 9.81)
44/11.18 = m
m = 3.94 kg