The static friction exerted on the block by the incline is
.
The given parameters;
- <em>mass of the block, = M</em>
- <em>coefficient of static friction in section 1, = </em>
<em /> - <em>angle of inclination of the plane, = θ</em>
<em />
The normal force on the block is calculated as follows;
Fₙ = Mgcosθ
The static friction exerted on the block by the incline is calculated as follows;

Thus, the static friction exerted on the block by the incline is 
Learn more here:brainly.com/question/17237604
Answer:
(c) +6.67
Explanation:
f1 = 10 cm
f2 = 20 cm
u = Object distance = 15 cm
Distance between lenses = 20 cm
For first lens image distance

Distance from second lens is 10 cm to the right

The final image will appear as +6.67 cm
Answer:
option B.
Explanation:
The correct answer is option B.
The phenomenon of the curtains to pull out of the window can be explained using Bernoulli's equation.
According to Bernoulli's Principle when the speed of the moving fluid increases the pressure within the fluid decrease.
When wind flows in the outside window the pressure outside window decreases and pressure inside the room is more so, the curtain moves outside because of low pressure.
To solve this problem we will apply the concepts related to the Impulse which can be defined as the product between mass and the total change in velocity. That is to say

Here,
m = mass
Change in velocity
As we can see there are two types of velocity at the moment the object makes the impact,
the first would be the initial velocity perpendicular to the wall and the final velocity perpendicular to the wall.
That is to say,


El angulo dado es de 45° y la velocidad de 25, por tanto


The change of sign indicates a change in the direction of the object.
Therefore the impulse would be as


The negative sign indicates that the pulse is in the opposite direction of the initial velocity.