answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Goryan [66]
2 years ago
10

A particle leaves the origin with an initial velocity v → = (3.00iˆ) m/s and a constant acceleration a → = (−1.00iˆ − 0.500jˆ) m

/s2. When it reaches its maximum x coordinate, what are its (a) velocity and (b) position vector?
Physics
1 answer:
tatiyna2 years ago
7 0

Answer:

the position vector (x,y) will be (1.5 m,-2.25 m) and the velocity vector (vx,vy) will be ( 0 m/s , -1.5 m/s) when x reaches its maximum x coordinate

Explanation:

Since the velocity is related with the acceleration and coordinates through

vx²=v₀x²+2*ax*x

where

vx = velocity in the x direction

v₀x = initial velocity in the x direction = 3 m/s

ax = acceleration in the x direction = −1.00 m/s²

x= coordinates in the x-axis

when x reaches its maximum coordinate , then vx=0

thus

vx²=v₀x²+2*ax*x

0 = (3 m/s)² + 2* (−1.00 m/s²)*x

x= 1.5 m

also for the time t

vx = v₀x + ax*t → t= (vx-v₀x)/ax = (0- 3 m/s)/  (−1.00 m/s²) = 3 seconds

for the y coordinates

y = y₀+v₀y*t + 1/2 ay*t²

where

v₀y = initial velocity in the y direction = 0 m/s

ay = acceleration in the x direction = −0.5 m/s²

y= coordinates in the y-axis

y₀= initial coordinate in the y-axis =0

then since y₀=0 and v₀y=0

y = 1/2*ay*t²

y = 1/2*ay*t² = 1/2*(−0.5 m/s²)*(3 s)² = -2.25 m

and

vy=v₀y+ ay*t= 0+(−0.5 m/s²)*(3 s)= (-1.5 m/s)

therefore the position vector (x,y) will be (1.5 m,-2.25 m)

and the velocity vector (vx,vy) will be ( 0 m/s , -1.5 m/s)

You might be interested in
A girl is shown at position A on a swing when the seat is directly below the support bar. The seat is then at height A as shown
MrRa [10]

Answer:

<u></u>

  • <u>1. The potential energy of the swing is the greatest at the position B.</u>

  • <u>2. As the swing moves from point B to point A, the kinetic energy is increasing.</u>

Explanation:

Even though the syntax of the text is not completely clear, likely because it accompanies a drawing that is not included, it results clear that the posittion A is where the seat is at the lowest position, and the position B is upper.

The gravitational <em>potential energy </em>is directly proportional to the height of the objects with respect to some reference altitude. Thus, when the seat is at the position A the swing has the smallest potential energy and when the seat is at the <em>position B the swing has the greatest potential energy.</em>

Regarding the forms of energy, as the swing moves from point B to point A, it is going downward, gaining kinetic energy (speed) at the expense of the potential energy (losing altitude). When the seat passes by the position A, the kinetic energy is maximum and the potential energy is miminum. Then the seat starts to gain altitude again, losing the kinetic energy and gaining potential energy, up to it gets to the other end,

7 0
2 years ago
Read 2 more answers
In the lab activity, you will examine sound waves as they are emitted from a moving source. Predict what will happen to the soun
irina1246 [14]
<span>As a sound source gets closer, both the volume and the pitch of the sound increased. Then, as the sound source passed by you, both the volume and the pitch of the sound decreased.
 Hope this helps</span>
6 0
2 years ago
Read 2 more answers
Margy is trying to improve her cardio endurance by performing an exercise in which she alternates walking and running 100.0 m ea
madreJ [45]
In order to answer this exercise you need to use the formulas

 S = Vo*t + (1/2)*a*t^2

Vf = Vo + at

The data will be given as

Vf = final velocity = ?

Vo = initial velocity = 1.4 m/s

a = acceleration = 0.20 m/s^2

s = displacement = 100m

And now you do the following:

100 = 1.4t + (1/2)*0.2*t^2

t = 25.388s

and

Vf = 1.4 + 0.2(25.388)

Vf = 6.5 m/s

So the answer you are looking for is 6.5 m/s
7 0
2 years ago
Read 2 more answers
I pull the throttle in my racing plane at a = 12.0 m/s2. I was originally flying at v = 100. m/s. Where am I when t = 2.0s, t =
Helen [10]
Summary:
a= 12.0 m/(s^2)
v= 100m/s
t1= 2.0s => s1=?
t2=5.0s => s2=?
t3=10.0s => s3=?
——————
Solution:
• when t1=2.0 s, I have gone:
S1= v*t1 + 1/2*a*(t1^2)
=100.0 *2 + 1/2*12.0*(2.0^2)
=224 (m)

• when t2=5.0s, I have gone
S2=v*t2+ 1/2*a*(t2^2)
= 100*5.0+ 1/2*12.0*(5.0^2)
=650 (m)

•when t3= 10.0s, I have gone:
S3=v*t3+ 1/2*a*(t3^2)
=100*10.0+ 1/2*12*(10.0^2)
=1600 (m)
7 0
2 years ago
Two wires are stretched between two fixed supports and have the same length. One wire A there is a second-harmonic standing wave
lina2011 [118]

(a) Greater

The frequency of the nth-harmonic on a string is an integer multiple of the fundamental frequency, f_1:

f_n = n f_1

So we have:

- On wire A, the second-harmonic has frequency of f_2 = 660 Hz, so the fundamental frequency is:

f_1 = \frac{f_2}{2}=\frac{660 Hz}{2}=330 Hz

- On wire B, the third-harmonic has frequency of f_3 = 660 Hz, so the fundamental frequency is

f_1 = \frac{f_3}{3}=\frac{660 Hz}{3}=220 Hz

So, the fundamental frequency of wire A is greater than the fundamental frequency of wire B.

(b) f_1 = \frac{v}{2L}

For standing waves on a string, the fundamental frequency is given by the formula:

f_1 = \frac{v}{2L}

where

v is the speed at which the waves travel back and forth on the wire

L is the length of the string

(c) Greater speed on wire A

We can solve the formula of the fundamental frequency for v, the speed of the wave:

v=2Lf_1

We know that the two wires have same length L. For wire A, f_1 = 330 Hz, while for wave B, f_B = 220 Hz, so we can write the ratio between the speeds of the waves in the two wires:

\frac{v_A}{v_B}=\frac{2L(330 Hz)}{2L(220 Hz)}=\frac{3}{2}

So, the waves travel faster on wire A.

7 0
2 years ago
Other questions:
  • A 5 inch tall balloon shoot doubles in height every 3 days. if the equation y=ab^x, where is x is the number of doubling periods
    10·1 answer
  • a bicycle pump contains 20cm3 of air at a pressure of 100kpa the air is then pumped in a single stroke through a valve into a ty
    8·1 answer
  • an asteroid flies close to the earth. gravity does what? A.repels the asteroid away from the earth. B. attracts the asteroid and
    13·1 answer
  • Which one of the following devices converts radioactive emissions to light for detection?
    8·1 answer
  • (a) Triply charged uranium-235 and uranium-238 ions are being separated in a mass spectrometer. (The much rarer uranium-235 is u
    6·1 answer
  • A proposed space elevator would consist of a cable stretching from the earth's surface to a satellite, orbiting far in space, th
    6·1 answer
  • Consider a bird that flies at an average speed of 10.7 m/sm/s and releases energy from its body fat reserves at an average rate
    5·2 answers
  • Which phrases describe NASA's goals in the coming years? Check all that apply.
    5·2 answers
  • Kevin Tan's Balance Sheet. Total assets are 13,200 dollars. Total liabilities are 9,150 dollars. What is Kevin’s net worth on Ma
    8·1 answer
  • A wildebeest and chicken participate in a race over a 2.00km long course. the wildebeest travels at a speed of 16.0m/s and chick
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!