T = √(h)/(0.5)(9.81)
t = √(25)/(4.905)
t = √5.1
t = 2.26 seconds
hope this helps and have a great day :)
The weight of the meterstick is:

and this weight is applied at the center of mass of the meterstick, so at x=0.50 m, therefore at a distance

from the pivot.
The torque generated by the weight of the meterstick around the pivot is:

To keep the system in equilibrium, the mass of 0.50 kg must generate an equal torque with opposite direction of rotation, so it must be located at a distance d2 somewhere between x=0 and x=0.40 m. The magnitude of the torque should be the same, 0.20 Nm, and so we have:

from which we find the value of d2:

So, the mass should be put at x=-0.04 m from the pivot, therefore at the x=36 cm mark.
Answer:
Explanation:
coefficient of kinetic friction of wooden floor μ = .4
force of friction = μ R , R is reaction force of floor
R = mg = weight of body
R = 25 N
force of friction = .4 x 25 = 10 N
Net force on the crate = 10 - 10 = zero .
Net force on the body will be nil.
Answer:
Explanation:
If Bradley examination was done and interpreted in the same facility, the radiologist code is used example- procedure code 72100- Radiologic examination, spine, lumbosacral, 2 or 3 views is reported.
if the X-ray was taken by Dr X but Dr X does not read or interpret the image but forward it to the radiologist for initial report, then a 26- modifier is used. E.g A reports by the technologist would be, procedure code 72050-Radiologic examination, spine, cervical, 2 or 3
views or 72050- TC in certain situations and the consulting radiologist would report 72050-26.
if Bradley’s x-ray were sent to an independent radiologist for interpretation, then the procedure code 76140 is used in reporting.
The kinetic energy of a moving object is given by

where m is the object's mass and v its velocity.
In our problem, the initial kinetic energy is:

while the final kinetic energy is:

So, the kinetic energy lost by Lucy and her bike is