Answer:
Explanation:
Force = Mass * acceleration due to gravity.
Given
Mass of the paratrooper = 57kg
Acceleration due to gravity = 9.81m/s²
Required
Force pulling him down
Substitute unto formula;
F = 57 * 9.81
Force = 559.17 N
Hence the force pulling him down is 559.17N
Kinetic energy<span> is the </span>energy<span> of motion. An object that has motion - whether it is vertical or horizontal motion - has </span>kinetic energy<span>. It is expressed as:
KE = mv^2 /2
720 = 10.0v^2 /2
v = 12 m/s
Hope this answers the question. Have a nice day.</span>
Answer:
<h2>0.056 W</h2>
Explanation:

From ohms law we know that
Given data
P1 = 0.5 Watt
P2 = ?
V1= 3 Volts
V2= 1 Volt
Thus we can solve for the power dissipated as follows


<em>The resistor will dissipate 0.056 Watt</em>
Answer:
The equation of displacement is
.
Explanation:
Given that,
Distance = 2.50 m
We need to calculate the equation of wave
Using general equation of wave
....(I)
Where, A = amplitude
t = time
x = displacement
= phase difference
Put the value in the equation
At t = 0, x = 0, y =A


From equation (I)

Hence, The equation of displacement is
.
Answer:
0.05 W
Explanation:
The power dissipated by a device can be written as

where
P is the power dissipated
V is the voltage drop on the device
I is the current flowing through the device
In this problem, we have
V = 5.0 V is the voltage drop across the device
I = 10.0 mA = 0.01 A is the current through it
By applying the formula, we find the power dissipated:
