1. The wavelength is the ratio of the wave's speed to its frequency in hertz or 1/s. This is shown below,
λ = s / f = (320 m/s) / (300 1/s) = 1.07 m
The wavelength is approximately 1.07 m.
2. The frequency is the ratio between speed and the wavelength,
f = (330 m/s) / 0.45 m = 733.33 hertz
The heat released by the water when it cools down by a temperature difference

is

where
m=432 g is the mass of the water

is the specific heat capacity of water

is the decrease of temperature of the water
Plugging the numbers into the equation, we find

and this is the amount of heat released by the water.
So 1 kg = 2.2 pounds.
66kg | 2.2 pounds
--------| ------------------
| 1kg
I set it up like this. The 66 kg crosses out with the 1kg. So you multiply the top 66 x 2.2 = 145.2 pounds
Answer:
When the ball goes down its mechanical energy is conserved, ust before touching the ground all the energy is kinetic
When the ball touches the floor, energy has been converted into potential and heat, by the deformation of the ball.
Explanation:
When the ball goes down its mechanical energy is conserved, this is the power energy due to the height it is converted into kinetic energy to medicad that falls, just before touching the ground all the energy is kinetic.
When the ball touches the floor, the kinetic energy is not conserved, but if we define a system formed by the ball and the floor, the amount of movement is conserved, this being an inelastic shock, because the bla and the floor are stuck, so which energy has been converted into potential and energized and heat by the deformation of the ball.
Consequently all the mechanical energy that the ball brings before reaching the ground was converted into potential energy and heat during the crash.
Answer:
The rise in temperature is 0.06 K.
Explanation:
mass of bullet, m = 15 g
initial speed, u = 865 m/s
final speed, v = 534 m/s
mass of water, M = 13.5 kg
specific heat of water, c = 4200 J/kg K
The change in kinetic energy

According to the conservation of energy, the change in kinetic energy is used to heat the water.
K = m c T
where, T is the rise in temperature.
3473 = 13.5 x 4200 x T
T = 0.06 K