answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nika2105 [10]
2 years ago
11

Your film idea is about drones that take over the world. In the script, two drones are flying horizontally at the same speed and

direction, one directly above the other. Suddenly, the drone on top malfunctions and loses power. It falls and collides with the drone below. Just before the collision, the falling drone has a vertical component of velocity of 60 m/s, while maintaining its horizontal component of velocity. The falling drone has a mass of 1 kg and the bottom drone has a mass of 3 kg. Before the malfunction, both drones were traveling horizontally with a speed of 20 m/s. If the two drones stick together after the collision, find the final speed and direction of the two drones just after the collision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Physics
1 answer:
Stella [2.4K]2 years ago
5 0

Answer:

vₓ = 20 m/s,    v_{y}  = -15 m / s

Explanation:

This is a conservation of moment problem, since it is a vector quantity we can work each axis independently

The system is formed by the two drones, so the forces during the crash are internal and the moment is conserved

X axis

Initial moment. Before the crash

         p₀ = m₁ v₀ₓ + m₂ v₀ₓ

Final moment. After the crash

       p_{fx} = (m₁ + m₂) vₓ

      p₀ₓ = p_{fx}

      m₁ v₀ₓ + m₂ v₀ₓ = (m₁ + m₂) vₓ

       vₓ = (m₁ + m₂) v₀ₓ / (m₁ + m₂)

       vₓ = v₀ₓ  = 20 m/s

Y Axis

Initial

         p_{oy} = m₁ v_{oy}

Final

         p_{fy} = (m₁ + m₂) v_{y}

         p_{oy} = p_{fy}

the drom rises and when it falls it has the same speed because there is no friction    v_{oy} = -60 m/s          

 

           m₁ v_{oy} = (m₁ + m₂) v_{y}

            v_{y} = m₁ / (m₁ + m₂) v_{oy}

            v_{y}  = 1/4    60

            v_{y}  = -15 m / s

Vertical speed is down

You might be interested in
An object is moving in the plane according to these parametric equations:
aniked [119]
A. The horizontal velocity is 
vx = dx/dt = π - 4πsin (4πt + π/2)
vx = π - 4π sin (0 + π/2)
vx = π - 4π (1)
vx = -3π

b. vy = 4π cos (4πt + π/2)
vy = 0

c. m = sin(4πt + π/2) / [<span>πt + cos(4πt + π/2)]

d. m = </span>sin(4π/6 + π/2) / [π/6 + cos(4π/6 + π/2)]

e. t = -1.0

f. t = -0.35

g. Solve for t 
vx = π - 4πsin (4πt + π/2) = 0
Then substitute back to solve for vxmax

h. Solve for t
vy = 4π cos (4πt + π/2) = 0
The substitute back to solve for vymax

i. s(t) = [<span>x(t)^2 + y</span>(t)^2]^(1/2)

h. s'(t) = d [x(t)^2 + y(t)^2]^(1/2) / dt

k and l. Solve for the values of t
d [x(t)^2 + y(t)^2]^(1/2) / dt = 0
And substitute to determine the maximum and minimum speeds.
5 0
2 years ago
Read 2 more answers
Write a hypothesis about how the force applied to a cart affects the acceleration of the cart. Use the "if . . . then . . .becau
Lesechka [4]
"If one increases the force on an object, its acceleration increases too because the push it feels is greater"

We have the 2nd law of Newton that relates the 3 concepts; F=m*a. We have that if the mass of an object increases (put weight in luggage), the accelearation decreases; in fact it is inversely proportional to the mass. Hence if the mass is doubled, acceleration is halved. Accelerations is proportional to force; if one doubles the force, the acceleration doubles too.
7 0
2 years ago
Read 2 more answers
The initial velocity of a 4.0-kg box is 11 m/s, due west. After the box slides 4.0 m horizontally, its speed is 1.5 m/s. Determi
ankoles [38]

Answer:

F = - 59.375 N

Explanation:

GIVEN DATA:

Initial velocity = 11 m/s

final velocity = 1.5 m/s

let force be F

work done =  mass* F = 4*F

we know that

Change in kinetic energy = work done

kinetic energy = = \frac{1}{2}*m*(v_{2}^{2}-v_{1}^{2})

kinetic energy = = \frac{1}{2}*4*(1.5^{2}-11^{2}) = -237.5 kg m/s2

-237.5 = 4*F

F = - 59.375 N

7 0
2 years ago
The descriptions below explain two ways that water is used by plants on a sunny day. I. In a process called transpiration, some
grigory [225]
In photosynthesis, the water is being used to create food for the plant (Glucose). In transpiration the water is going from a liquid to a gas that's being released.
4 1
2 years ago
Read 2 more answers
Using the right-hand rule from your lessons, determine the directions of the electrical current and magnetic field of the electr
aliya0001 [1]

Answer:

Hello there use something that looks like this

Explanation:

This is an accurate representation of something you are working on!

As you can see the wire and the core are represented on the left and is showing how it can be represented on your right hand and how they are similar!

5 0
2 years ago
Other questions:
  • Gravitational potential energy is often released by burning substances. true or false
    15·2 answers
  • The buoyant force on an object fully submerged in a liquid depends on (select all that apply)
    13·1 answer
  • What is the unresolved problem that is facing scientists on the island of Guam?
    7·1 answer
  • Kate is working on a project in her tech education class. She plans to assemble a fan motor. Which form of energy does the motor
    11·1 answer
  • Step 8: Observe How Changes in the Speed of the Bottle Affect Beanbag Height
    7·2 answers
  • In aviation, it is helpful for pilots to know the cloud ceiling, which is the distance between the ground and lowest cloud. The
    11·1 answer
  • A glider of mass 0.240 kg is on a frictionless, horizontal track, attached to a horizontal spring of force constant 6.00 N/m. In
    14·1 answer
  • You are comparing two diffraction gratings using two different lasers: a green laser and a red laser. You do these two experimen
    8·1 answer
  • Calculate the true mass (in vacuum) of a piece of aluminum whose apparent mass is 4.5000 kgkg when weighed in air. The density o
    5·1 answer
  • A 70kg man spreads his legs as shown calculate the tripping force​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!