Complete Question
For each of the following scenarios, describe the force providing the centripetal force for the motion:
a. a car making a turn
b. a child swinging around a pole
c. a person sitting on a bench facing the center of a carousel
d. a rock swinging on a string
e. the Earth orbiting the Sun.
Answer:
Considering a
The force providing the centripetal force is the frictional force on the tires \
i.e 
where
is the coefficient of static friction
Considering b
The force providing the centripetal force is the force experienced by the boys hand on the pole
Considering c
The force providing the centripetal force is the normal from the bench due to the boys weight
Considering d
The force providing the centripetal force is the tension on the string
Considering e
The force providing the centripetal force is the force of gravity between the earth and the sun
Explanation:
Answer:
There would be a pressure drop in the direction of the higher opening. This will force air to move in from the lower opening and force it to leave through the higher opening. This will create a convectional movement of air, cooling and ventilating the tunnel.
Explanation:
This is in accordance with bernoulli's law of fluid flow which states that the pressure exerted by a moving fluid is lesser than it would exert if it were at rest.
Answer:
Given that
V= 0.06 m³
Cv= 2.5 R= 5/2 R
T₁=500 K
P₁=1 bar
Heat addition = 15000 J
We know that heat addition at constant volume process ( rigid vessel ) given as
Q = n Cv ΔT
We know that
P V = n R T
n=PV/RT
n= (100 x 0.06)(500 x 8.314)
n=1.443 mol
So
Q = n Cv ΔT
15000 = 1.433 x 2.5 x 8.314 ( T₂-500)
T₂=1000.12 K
We know that at constant volume process
P₂/P₁=T₂/T₁
P₂/1 = 1000.21/500
P₂= 2 bar
Entropy change given as

Cp-Cv= R
Cp=7/2 R
Now by putting the values


a)ΔS= 20.79 J/K
b)
If the process is adiabatic it means that heat transfer is zero.
So
ΔS= 20.79 J/K
We know that

Process is adiabatic




Answer:
25.82 m/s
Explanation:
We are given;
Force exerted by baseball player; F = 100 N
Distance covered by ball; d = 0.5 m
Mass of ball; m = 0.15 kg
Now, to get the velocity at which the ball leaves his hand, we will equate the work done to the kinetic energy.
We should note that work done is a measure of the energy exerted by the baseball player.
Thus;
F × d = ½mv²
100 × 0.5 = ½ × 0.15 × v²
v² = (2 × 100 × 0.5)/0.15
v² = 666.67
v = √666.67
v = 25.82 m/s
Answer: t-trees?
i couldn't find anything on this topic but the only thing i could think of was trees, maybe if you go to a history website you can find a answer there :)
hope i helped a little :)