The speed of light is constant in ALL frames of reference. That is 2.9 x10^8 m/s (290,000,000 m/s). It is independent of the motion of the light source.
Answer:
1.99×10^-4coulombs
Explanation:
The charge (Q) across the resistor the directly proportional to the voltage (V) where capacitance of the capacitor(C) is the proportionality constant. Mathematically, Q = CV
If V is the voltage across the resistor, V = IR (according to ohm's law) where I is the current in the resistor and R is the resistance.
We need to calculate the voltage on the resistor first when 0.18A current is passed through it.
V = 0.18 × 185
V = 33.3Volts
The charge Q on the resistor will be;
Q = CV
Were C = 6.00 μF, V = 33.3
Q= 6×10^-6 ×33.3
Q = 0.0001998
Q= 1.99×10^-4Coulombs
Answer:
The height of the wave is determined by the wind strength and fetch.
Explanation:
The height of the wave is determined by the wind strength and fetch.
The more the strength and the more the fetch size the more will be the height of the wave.
Remember as the wave approaches the coast its wavelength decreases and the wave height increases, whereas when the wave goes away from the coast its wavelength increases and height decreases.
Answer:
Q=1005 J
t= 0.67 sec
Explanation:
Lets take condition of room is 1 atm and 25°C.
Heat capacity ,c = 21 J /K.mol
If we assume that air is ideal gas that
P V = n R T



V= 107250 L
At STP number of moles given as

V=22.4 L at S.T.P.

n=4787.94 moles
n= 4.784 Kmoles
So heat required to raise 10°C temperature
Q = n x c x ΔT
Q = 4.78794 x 21 x 10
Q=1004.64 J
Time t
t= Q/P
P= 1.5 KW
t = 1.004.64 /1.5
t= 0.66 sec