Answer:
0.0000045 s
Explanation:
f = Frequency = 8 MHz
Clock cycle is given by

Time taken for 12 clock cycles

Time taken per instruction is 0.0000015 s
In reading and displaying information it requires 3 processes
1 for reading, 1 for searching and 1 for displaying.

Time taken is 0.0000045 s
Answer: TRUST ME I GOT IT WRONG the answer is B
Explanation:
To solve this problem it is necessary to apply the concepts related to the magnetic dipole moment in terms of the current and the surface area, as well as the current density, as a function of the current over the area.
Part A) By definition we know that magnetic dipole moment is

Where,
I = Current
S = Area

Replacing with our values we have that,

Re-arrange to find I,

Part B) To find the Current density we need to find the cross sectional area of the Wire:

Finally the current density is simply J

PART C) Finally to make the comparison with the given values we have to cross-sectional area would be

Therefore the current density would be

Comparing the two values we can see that the 2mm wire has a higher current density.
Refer to the diagram shown below.
Because the ramp is slippery, ignore dynamic friction.
Let m = the mass of the frog.
g = 9.8 m/s²
The KE (kinetic energy) at the bottom of the ramp is
KE₁ = (1/2)*(m kg)*(5 m/s)² = 12.5 m J
Let v = the velocity at the top of the ramp.
The KE at the top of the ramp is
KE₂ = (1/2)*m*v²= 0.5 mv² J
The PE (potential energy) at the top of the ramp relative to the bottom is
PE₂ = (m kg)*(9.8 m/s²)*(1 m) = 9.8m J
Conservation of energy requires that
KE₁ = KE₂ + PE₂
12.5m = 0.5mv² + 9.8m
0.5v² = 2.7
v = 2.324 m/s
Answer: 2.324 m/s