answer;
The hole in the center of the washer will expand
explanation;
<em>A flat metal washer is heated. As the washer's temperature increases, what happens to the hole in the center? A flat metal washer is heated. As the washer's temperature increases, what happens to the hole in the center? The hole in the center will remain the same size. Changes in the hole cannot be determined without know the composition of the metal. The hole in the center of the washer will expand. The hole in the center of the washer will contract.</em>
this is an example of area expansivity.
coefficient of area expansivity is change in area per area per degree rise in temperature
a=dA/(A*dt)
as the temperature rises , there will be volumetric and area expansivity on the body. volume also increases because of the intermolecular forces of attraction between the molecule is now getting apart.
The temperature will remain constant, at around 100 C, and the volume of water in the pot will decrease, as it turns into steam and floats away from the pot.
Iodine is the answer to your question buddy
Answer:
A) θ = 13.1º , B) E
Explanation:
A) For this exercise, let's use Newton's second law, let's set a reference frame where the axis ax is in the radial direction and is horizontal, the axis y is vertical.
In this reference system the only force that we must decompose is the Normal one, let's use trigonometry
sin θ = Nₓ / N
cos θ =
/ N
Nₓ = N sin θ
Ny = N cos θ
x-axis (radial)
Nₓ = m a
where the acceleration is centripetal
a = v² / R
we substitute
-N sin θ = -m v² / R (1)
the negative sign indicates that the force and acceleration towards the center of the circle
y-axis (Vertical)
Ny - W = 0
N cos θ = mg
N = mg / cos θ
we substitute in 1
mg / cos θ sin θ = m v² / R
g tan θ = v² / R
θ = tan⁻¹ (v² / gR)
we calculate
θ = tan⁻¹ (25² / 9.8 274)
θ = 13.1º
B) when comparing the equations the correct one is E
Answer:
a) E = ρ / e0
b) E = ρ*a / (e0 * r)
c) E = 0
Explanation:
Because of the geometry, the electric field lines will all have a radial direction.
Using Gauss law

Using a Gaussian surface that is cylinder concentric to the cable, the side walls will have a flux of zero, because the electric field lines will be perpendicular. The round wall of the cylinder will have the electric field lines normal to it.
We can make this cylinder of different radii to evaluate the electric field at different points.
Then:
A = 2*π*r (area of cylinder per unit of length)
Q/e0 = 2*π*r*E
E = Q / (2*π*e0*r)
Where Q is the charge contained inside the cylinder.
Inside the cable core:
There is a uniform charge density ρ
Q(r) = ρ * 2*π*r
Then
E = ρ * 2*π*r / (2*π*e0*r)
E = ρ / e0 (electric field is constant inside the charged cylinder.
Between ther inner cilinder and the tube:
Q = ρ * 2*π*a
E = ρ * 2*π*a / (2*π*e0*r)
E = ρ*a / (e0 * r)
Outside the tube, the charges of the core cancel each other.
E=0