answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irinina [24]
2 years ago
13

To practice Problem-Solving Strategy 17.1 for wave interference problems. Two loudspeakers are placed side by side a distance d

= 4.00 m apart. A listener observes maximum constructive interference while standing in front of the loudspeakers, equidistant from both of them. The distance from the listener to the point halfway between the speakers is l = 5.00 m . One of the loudspeakers is then moved directly away from the other. Once the speaker is moved a distance r = 60.0 cm from its original position, the listener, who is not moving, observes destructive interference for the first time. Find the speed of sound v in the air if both speakers emit a tone of frequency 700 Hz .

Physics
1 answer:
Nimfa-mama [501]2 years ago
7 0

Complete Question

The compete question is shown on the first uploaded question

Answer:

The speed is  v  =  350 \  m/s  

Explanation:

From the question we are told that

   The  distance of separation is  d =  4.00 m  

  The distance of the listener to the center between the speakers is  I =  5.00 m

  The change in the distance of the speaker is by k  =  60 cm  =  0.6 \  m

    The frequency of both speakers is f =  700 \  Hz

Generally the distance of the listener to the first speaker is mathematically represented as

       L_1  =  \sqrt{l^2 + [\frac{d}{2} ]^2}

       L_1  =  \sqrt{5^2 + [\frac{4}{2} ]^2}

        L_1  =   5.39 \  m

Generally the distance of the listener to second speaker at its new position is  

          L_2  =  \sqrt{l^2 + [\frac{d}{2} ]^2 + k}

       L_2  =  \sqrt{5^2 + [\frac{4}{2} ]^2 + 0.6}

        L_2  =   5.64  \  m  

Generally the path difference between the speakers is mathematically represented as

        pD  = L_2 - L_1  =  \frac{n  *  \lambda}{2}

Here \lambda is the wavelength which is mathematically represented as

         \lambda =  \frac{v}{f}

=>    L_2 - L_1  =  \frac{n  *  \frac{v}{f}}{2}

=>    L_2 - L_1  =  \frac{n  *  v}{2f}  

=>    L_2 - L_1  =  \frac{n  *  v}{2f}  

Here n is the order of the maxima with  value of  n =  1  this because we are considering two adjacent waves

=>    5.64 - 5.39   =  \frac{1  *  v}{2*700}      

=>    v  =  350 \  m/s  

You might be interested in
In the Atwood machine shown below, m1 = 2.00 kg and m2 = 6.05 kg. The masses of the pulley and string are negligible by comparis
Rus_ich [418]
M1 descending
−m1g + T = m1a 

m2 ascending
m2g − T = m2a

this gives :
(m2 − m1)g = (m1 + m2)a 

a = (m2 − m1)g/m1 + m2
   = (5.60 − 2)/(2 + 5.60) x 9.81 
   = = 4.65m/s^2
5 0
2 years ago
Table C. The Effects of a Magnet on Electric Current
Degger [83]
Magnet moving left to right
5 0
2 years ago
A 4.0-m-diameter playground merry-go-round, with a moment of inertia of 350 kg⋅m2 is freely rotating with an angular velocity of
Flauer [41]

Answer:

v = 4.375\,\frac{m}{s}

Explanation:

The situation of the system Ryan - merry-go-round is modelled after the Principle of the Angular Momentum Conservation:

(350\,kg\cdot m^{2})\cdot (1.5\,\frac{rad}{s} ) - (2\,m)\cdot (60\,kg)\cdot v = 0\,kg\cdot \frac{m^{2}}{s}

The initial speed of Ryan is:

v = 4.375\,\frac{m}{s}

5 0
2 years ago
Read 2 more answers
The magnetic field at the earth's surface can vary in response to solar activity. During one intense solar storm, the vertical c
Flauer [41]

Answer:

EMF = 33880 Volts

Explanation:

As per Faraday's law of Electromagnetic induction we know that

Rate of change in magnetic flux will induce EMF in the closed conducting loop

so we have

\phi = B.A

now we have

A = (110 \times 10^3)(110 \times 10^3)

A = 1.21 \times 10^{10}

now we have

\phi = B(1.21 \times 10^{10})

now the induced EMF through this loop is given as

EMF = (\frac{dB}{dt})(1.21 \times 10^{10})

EMF = (2.8 \times 10^{-6})(1.21 \times 10^{10})

EMF = 33880 Volts

5 0
2 years ago
The leaning tower of Pisa is about 56 meters tall. A ball released from the top takes 3.4 seconds to reach the ground. The final
geniusboy [140]
S=56, u=0, v=33, a=?, t=3.4

v=u+at
33=3.4 a
a = 9.7m/s^2
7 0
2 years ago
Read 2 more answers
Other questions:
  • Light-rail passenger trains that provide transportation within andchameleons catch insects with their tongues, which they can ra
    7·1 answer
  • A crate is placed on an adjustable, incline board. the coefficient of static friction between the crate and the board is 0.29.
    11·1 answer
  • A brick is resting on a rough incline as shown in the figure. The friction force acting on the brick, along the incline, is
    9·2 answers
  • Two disks with the same rotational inertia i are spinning about the same frictionless shaft, with the same angular speed ω, but
    8·1 answer
  • A crate on a motorized cart starts from rest and moves with a constant eastward acceleration ofa= 2.60 m/s^2. A worker assists t
    12·1 answer
  • According to Newton's Law of Universal Gravitation, which of the following would cause the attractive force between a planet and
    8·1 answer
  • A 0.2-kg steel ball is dropped straight down onto a hard, horizontal floor and bounces straight up. The ball's speed just before
    5·2 answers
  • The submarine sends out a sound wave that returns in 1.08 seconds. If this sound wave has a frequency of 2.50 × 106 Hz and a wav
    5·1 answer
  • Suppose an acorn with a mass of 3.17 g falls off a tree. At a particular moment during the fall, the acorn has a kinetic energy
    10·1 answer
  • Which of these is the largest? <br> a. star<br> b. nebula<br> c. galaxy<br> d. sun
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!