answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vovikov84 [41]
2 years ago
6

Pamela has three computers, all of

Physics
2 answers:
Lena [83]2 years ago
6 0

Answer:

Pamela has three computers, all of them are very old.

Explanation:

Fiesta28 [93]2 years ago
5 0
U need to write better u egg head kid or tell your mom
You might be interested in
A golfer hits a golf ball at an angle of 25.0° to the ground. if the golf ball covers a horizontal distance of 301.5 m, what is
kvasek [131]

<u>Answer:</u>

 Maximum height reached = 35.15 meter.

<u>Explanation:</u>

Projectile motion has two types of motion Horizontal and Vertical motion.

Vertical motion:

         We have equation of motion, v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration and t is the time taken.

         Considering upward vertical motion of projectile.

         In this case, Initial velocity = vertical component of velocity = u sin θ, acceleration = acceleration due to gravity = -g m/s^2 and final velocity = 0 m/s.

        0 = u sin θ - gt

         t = u sin θ/g

    Total time for vertical motion is two times time taken for upward vertical motion of projectile.

    So total travel time of projectile = 2u sin θ/g

Horizontal motion:

  We have equation of motion , s= ut+\frac{1}{2} at^2, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.

  In this case Initial velocity = horizontal component of velocity = u cos θ, acceleration = 0 m/s^2 and time taken = 2u sin θ /g

 So range of projectile,  R=ucos\theta*\frac{2u sin\theta}{g} = \frac{u^2sin2\theta}{g}

 Vertical motion (Maximum height reached, H) :

     We have equation of motion, v^2=u^2+2as, where u is the initial velocity, v is the final velocity, s is the displacement and a is the acceleration.

   Initial velocity = vertical component of velocity = u sin θ, acceleration = -g, final velocity = 0 m/s at maximum height H

   0^2=(usin\theta) ^2-2gH\\ \\ H=\frac{u^2sin^2\theta}{2g}

In the give problem we have R = 301.5 m,  θ = 25° we need to find H.

So  \frac{u^2sin2\theta}{g}=301.5\\ \\ \frac{u^2sin(2*25)}{g}=301.5\\ \\ u^2=393.58g

Now we have H=\frac{u^2sin^2\theta}{2g}=\frac{393.58*g*sin^2 25}{2g}=35.15m

 So maximum height reached = 35.15 meter.

7 0
2 years ago
. 30
schepotkina [342]

Answer:

Explanation:

Length if the bar is 1m=100cm

The tip of the bar serves as fulcrum

A force of 20N (upward) is applied at the tip of the other end. Then, the force is 100cm from the fulcrum

The crate lid is 2cm from the fulcrum, let the force (downward) acting on the crate be F.

Using moment

Sum of the moments of all forces about any point in the plane must be zero.

Let take moment about the fulcrum

100×20-F×2=0

2000-2F=0

2F=2000

Then, F=1000N

The force acting in the crate lid is 1000N

Option D is correct

7 0
2 years ago
In a harbor, you can see sea waves traveling around the edges of small stationary boats. Why does this happen?
faust18 [17]
Below are the choices that can be found in the other sources:

A. diffraction 
<span>B. refraction </span>
<span>C. reflection </span>
<span>D. transmission
</span>
The answer is diffraction. It means that <span>the process by which a beam of light or other system of waves is spread out as a result of passing through a narrow aperture or across an edge, typically accompanied by interference between the wave forms produced.</span>
8 0
2 years ago
The drawing shows the top view of a door that is 1.68 m wide. two forces are applied to the door as indicated. what is the magni
jekas [21]
First, torque is equal to force times the distance. for the first force that is applied, the torque is zero because is applied at the hinge. so the net torque:
t = ( 12 N ) ( 0 m ) ( cos 30 ) + ( 12 N ) ( 1.68 m ) cos 45
t = 14.26 Nm is the torque with respect to the hinge
8 0
2 years ago
A 0.305 kg book rests at an angle against one side of a bookshelf. The magnitude and direction of the total force exerted on the
tankabanditka [31]

Answer

given,

F_L= 1.52\ N

\theta_L= 31^0

mass of book = 0.305 Kg

so, from the diagram attached  below

F_L cos {\theta_L} + F_b sin {\theta_b} = m g

1.52 times cos {31^0} + F_b sin {\theta_b} = 0.305 \times 9.8

F_b sin {\theta_b} = 2.989 -1.303

F_b sin {\theta_b} = 1.686

computing horizontal component

F_b cos {\theta_b} = F_L sin {\theta_L}

cos {\theta_b} = \dfrac{F_L sin {\theta_L}}{F_b}

cos {\theta_b} = \dfrac{1.52 \times sin {31^0}}{1.686}

cos {\theta_b} = 0.464

θ = 62.35°

5 0
2 years ago
Other questions:
  • Myth: An organism's kingdom only describes physical characteristics. <br> Fact:<br> Evidence:
    14·1 answer
  • A force of 50 Newtons causes an object to accelerate at 10 meters per second squared. What is the mass of the object?
    11·1 answer
  • Three disks are spinning independently on the same axle without friction. Their respective rotational inertias and angular speed
    10·2 answers
  • The strength of the electric field at a certain distance from a point charge is represented by E. What is the strength of the el
    14·1 answer
  • A car of mass 1100kg moves at 24 m/s. What is the braking force needed to bring the car to a halt in 2.0 seconds? N
    13·1 answer
  • A gaseous system undergoes a change in temperature and volume. What is the entropy change for a particle in this system if the f
    11·1 answer
  • A 1.45 kg falcon catches a 0.515 kg dove from behind in midair. What is their velocity after impact if the falcon's velocity is
    5·1 answer
  • As an object in motion becomes heavier, its kinetic energy _____. A. increases exponentially B. decreases exponentially C. incre
    13·2 answers
  • A pronghorn antelope has been observed to run with a top speed of 97 km/h. Suppose an antelope runs 1.5 km with an average speed
    13·1 answer
  • Calculate the force of gravity between two objects of masses 1300 kg and 7800 kg, which are 0.23 m apart.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!