answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natka813 [3]
2 years ago
15

In this problem you are to consider an adiabaticexpansion of an ideal diatomic gas, which means that the gas expands with no add

ition or subtraction of heat.Assume that the gas is initially at pressure p0, volume V0, and temperature T0. In addition, assume that the temperature of the gas is such that you can neglect vibrational degrees of freedom. Thus, the ratio of heat capacities is γ=Cp/CV=7/5.Note that, unless explicitly stated, the variable γ should not appear in your answers--if needed use the fact that γ=7/5 for an ideal diatomic gas.Part AFind an analytic expression for p(V), the pressure as a function of volume, during the adiabatic expansion.Express the pressure in terms of V and any or all of the given initial values p0, T0, and V0.Correctp(V) = p0(V0V)75Part BAt the end of the adiabatic expansion, the gas fills a new volume V1, where V1>V0. Find W, the work done by the gas on the container during the expansion.Express the work in terms of p0, V0, and V1. Your answer should not depend on temperature.Part CFind ΔU, the change of internal energy of the gas during the adiabatic expansion from volume V0 to volume V1.Express the change of internal energy in terms of p0, V0, and/or V1.Need Part B and C

Physics
1 answer:
rosijanka [135]2 years ago
5 0

Answer:

A: P=Po(Vo/V)^y

B: W=5/2Po(Vo-Vo^7/5 Vi^-2/5)

C: ∆V= 5/2Po[Vo^7/5 Vi^-2/5 -Vo]

Explanation:

Attached is the solution

You might be interested in
A person driving a car applies the brakes. This produces friction, which stops the car. Into which type of energy is the mechani
Makovka662 [10]

D) Heat, because friction produces heat, not light, gravitational or chemical. hope this helps! : )

7 0
2 years ago
Read 2 more answers
Let’s consider tunneling of an electron outside of a potential well. The formula for the transmission coefficient is T \simeq e^
ioda

Answer:

L' = 1.231L

Explanation:

The transmission coefficient, in a tunneling process in which an electron is involved, can be approximated to the following expression:

T \approx e^{-2CL}

L: width of the barrier

C: constant that includes particle energy and barrier height

You have that the transmission coefficient for a specific value of L is T = 0.050. Furthermore, you have that for a new value of the width of the barrier, let's say, L', the value of the transmission coefficient is T'=0.025.

To find the new value of the L' you can write down both situation for T and T', as in the following:

0.050=e^{-2CL}\ \ \ \ (1)\\\\0.025=e^{-2CL'}\ \ \ \ (2)

Next, by properties of logarithms, you can apply Ln to both equations (1) and (2):

ln(0.050)=ln(e^{-2CL})=-2CL\ \ \ \ (3)\\\\ln(0.025)=ln(e^{-2CL'})=-2CL'\ \ \ \ (4)

Next, you divide the equation (3) into (4), and finally, you solve for L':

\frac{ln(0.050)}{ln(0.025)}=\frac{-2CL}{-2CL'}=\frac{L}{L'}\\\\0.812=\frac{L}{L'}\\\\L'=\frac{L}{0.812}=1.231L

hence, when the trnasmission coeeficient has changes to a values of 0.025, the new width of the barrier L' is 1.231 L

8 0
2 years ago
1. Two identical bowling balls of mass M and radius R roll side by side at speed v0 along a flat surface. Ball 1 encounters a ra
UNO [17]

Answer:

1/2

Explanation:

We need to make a couple of considerations but basically the problem is solved through the conservation of energy.  

I attached a diagram for the two surfaces and begin to make the necessary considerations.

Rough Surface,

We know that force is equal to,

F_r = mgsin\theta

F_r = \mu N

F_r = \mu mg cos\theta

Matching the two equation we have,

\mu N = \mu mg cos\theta

\mu = tan\theta

Applying energy conservation,

\frac{1}{2}mv^2_0+\frac{1}{2}I_w^2 = F_r*d+mgh_1

\frac{1}{2}mv^2_0+\frac{2}{5}mR^2\frac{V_0^2}{R^2} = F_r*d+mgh_1

\frac{1}{2}mv^2_0+\frac{mv_0^2}{5} = mgsin\theta \frac{h_1sin\theta}+mgh_1

\frac{v_0^2}{2}+\frac{v_0^2}{5} = gh_1+gh_1

h_1 = \frac{1}{2g}(\frac{v_0^2}{2}+\frac{v_0^2}{5})

Frictionless surface

\frac{1}{2}mv_0^2+\frac{1}{2}I\omega^2 = mgh_2

\frac{1}{2}m_v^2+\frac{1}{2}\frac{2}{5}mR^2\frac{v_0^2}{R^2} =mgh_2

\frac{v_0^2}{2}+\frac{v_0^2}{5} = gh_2

h_2 = \frac{1}{g}(\frac{V_0^2}{2}+\frac{v_0^2}{5})

Given the description we apply energy conservation taking into account the inertia of a sphere. Then the relation between h_1 and h_2 is given by

\frac{h_1}{h_2} = \frac{\frac{1}{2g}(\frac{v_0^2}{2}+\frac{v_0^2}{5})}{\frac{1}{g}(\frac{V_0^2}{2}+\frac{v_0^2}{5})}

\frac{h_1}{h_2} = \frac{1}{2}

8 0
2 years ago
A closed, rigid container holding 0.2 moles of a monatomic ideal gas is placed over a Bunsen burner and heated slowly, starting
Georgia [21]

Answer:

a) 2250 J

b) 0 J

c) 2250 J

Explanation:

a) Since, the process is isochoric

the change in internal energy

\Delta U = n C_v(T_f-T_i)

Here, n = 0.2 moles

Cv = 12.5 J/mole.K

We have to find T_f so we can use gas equation as

\frac{P_1V_1}{P_2V_2} =\frac{T_i}{T_f}\\Since, V_1=V_2    [isochoric/process]\\\Rightarrow \frac{P_{atm}}{4P_{atm}} = \frac{300}{T_f} \\\Rightarrow T_f = 1200 K

So,  \Delta U= 0.2\times12.5(1200-300)\\=2250 J

b) Since, the process is isochoric no work shall be done.

c) By first law of thermodynamics we have

\Delta U = Q-W\\Since, W = 0\\\Delta U = Q\\Therefore, Q = 2250 J

Since, Q is positive 2250 J of heat will flow into the system.

6 0
2 years ago
At the circus, a 100-kilogram clown is fired 15 meters per second from a 500-kilogram cannon. What is the recoil speed of the ca
Ahat [919]
Recoil speed= 3m/s, method shown in photo

4 0
2 years ago
Other questions:
  • Which of the following equations illustrates the law of conservation of matter?
    10·1 answer
  • What common laboratory measuring device will we likely always use in experiments that measure enthalpy changes?
    13·1 answer
  • A hot–air balloon is moving at a speed of 10.0 meters/second in the +x–direction. The balloonist throws a brass ball in the +x–d
    10·1 answer
  • A large ant is standing on the middle of a circus tightrope that is stretched with tension Ts. The rope has mass per unit length
    15·1 answer
  • A 1.50 cm high diamond ring is placed 20.0 cm from a concave mirror with radius of curvature 30.00 cm. The magnification is ____
    14·1 answer
  • A projectile was launched horizontally with a velocity of 468m/s, 1.86m above the ground how long did it take the projectile to
    7·1 answer
  • Charge of uniform density (40 pC/m^2) is distributed on a spherical surface (radius = 1.0 cm), and a second concentric spherical
    14·1 answer
  • The surface is tilted to an angle of 37 degrees from the horizontal, as shown above in Figure 3. The blocks are each given a pus
    7·1 answer
  • A person with normal vision can focus on objects as close as a few centimeters from the eye up to objects infinitely far away. T
    7·1 answer
  • In a closed system that has 45 J of mechanical energy, the gravitational
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!