Answer:
Tangential velocity = 10.9 m/S
Explanation:
As per the data given in the question,
Force = 20 N
Time = 1.2 S
Length = 16.5 cm
Radius = 33.0 cm
Moment of inertia = 1200 kg.cm^2 = 1200 × 10^(-4) kg.m^2
= 1200 × 10^(-2) m^2
Revolution of the pedal ÷ revolution of wheel = 1
Torque on the pedal = Force × Length
= 20 × 16.5 10^(-2)
= 3.30 N m
So, Angular acceleration = Torque ÷ Moment of inertia
= 3.30 ÷ 12 × 10^(-2)
= 27.50 rad ÷ S^2
Since wheel started rotating from rest, so initial angular velocity = 0 rad/S
Now, Angular velocity = Initial angular velocity + Angular Acceleration × Time
= 0 + 27.50 × 1.2
= 33 rad/S
Hence, Tangential velocity = Angular velocity × Radius
= 33 × 33 × 10^(-2)
= 10.9 m/S
I would say its a positive cgarge
Answer:
varn=n1+1ehvkT–1
Explanation:
This is Einstein's equation.
Answer:
The car strikes the tree with a final speed of 4.165 m/s
The acceleration need to be of -5.19 m/seg2 to avoid collision by 0.5m
Explanation:
First we need to calculate the initial speed 
Once we have the initial speed, we can isolate the final speed from following equation:
Then we can calculate the aceleration where the car stops 0.5 m before striking the tree.
To do that, we replace 62 m in the first formula, as follows:

Answer:
Wave W is a sound wave, Waves X and Y are light waves, and it is impossible to tell what kind of wave Wave Z is.
Explanation:
W travels fastest through metal
X travels fastest through air,
Y travels more slowly through water than air
Z travels more slowly at cool temperatures
W appears to be sound wave as sound travels fastest through metal .
X appears to be light wave as light travels fastest in air .
Y also appears to be light wave as speed of light is reduced when it passes from air to water .
Z It is impossible to tell anything about the nature of Z wave .