To finish one orbit it will take 98 x 60 seconds. So; <span>(2 x pi)/(98 x 60) = 1.07 x 10^-3 rad/sec. </span><span>
</span>
Answer:
(a). The initial velocity is 28.58m/s
(b). The speed when touching the ground is 33.3m/s.
Explanation:
The equations governing the position of the projectile are


where
is the initial velocity.
(a).
When the projectile hits the 50m mark,
; therefore,

solving for
we get:

Thus, the projectile must hit the 50m mark in 1.75s, and this condition demands from equation (1) that

which gives

(b).
The horizontal velocity remains unchanged just before the projectile touches the ground because gravity acts only along the vertical direction; therefore,

the vertical component of the velocity is

which gives a speed
of


Answer:
The frequency is 
Explanation:
From the question we are told that
The time taken for it to decay to half its original size is
Let the voltage of the capacitor when it is fully charged be
Then the voltage of the capacitor at time t is said to be 
Now this voltage can be mathematical represented as

Where RC is the time constant
substituting values





Generally the cross-over frequency for a low pass filter is mathematically represented as

substituting values


Answer:
a. N = 2.49W b. 0.40
Explanation:
a. What is the magnitude of the normal force FNFN between a rider and the wall, expressed in terms of the rider's weight W?
Since the normal force equals the centripetal force on the rider, N = mrω² where r = radius of cylinder = 3.05 m and ω = angular speed of cylinder = 0.450 rotations/s = 0.450 × 2π rad/s = 2.83 rad/s
Now N = mrω² = m(3.05 m) × (2.83 rad/s)² = 24.43m
The rider's weight W = mg = 9.8m
The ratio of the normal force to the rider's weight is
N/W = 24.43m/9.8m = 2.49
So the normal force expressed in term's of the rider's weight is
N = 2.49W
b. What is the minimum coefficient of static friction µsμs required between the rider and the wall in order for the rider to be held in place without sliding down?
The frictional force, F on the rider by the wall of the cylinder equals the weight, W of the rider. F = W.
Since the frictional force F = μN, where μ = coefficient of static friction between rider and wall of cylinder and N = normal force between rider and wall of cylinder.
So, the normal force equals
N = F/μ = W/μ = mg/μ = mrω²
μ = mg/mrω²
= W/N
= 9.8m/24.43m
= 0.40