This is a free fall and in free fall we use this formula:
d = (1 ÷ 2) × g × t², where d is the distance, g is the gravitational acceleration and t is the time.
In our case,
We are already given the moon's gravitational acceleration and we are going to substitute it with g. Let's leave the unknown alone, which is t.
t = √(2d ÷ g)
If we perform the formula, t is found to be √(2d ÷ g) = √(2 × 1.2 ÷ 1.62) ≅ 1.217 s
I am sorry for my bad English and if there is anything that you do not understand please let me know.
Answer:
0.56 atm
Explanation:
First of all, we need to find the number of moles of the gas.
We know that
m = 1.00 g is the mass of the gas
is the molar mass of the carbon dioxide
So, the number of moles of the gas is

Now we can find the pressure of the gas by using the ideal gas equation:

where
p is the pressure
is the volume
n = 0.023 mol is the number of moles
is the gas constant
is the temperature of the gas
Solving the equation for p, we find

And since we have

the pressure in atmospheres is

Answer:
Potential difference though which the electron was accelerated is 
Explanation:
Given :
De Broglie wavelength , 
Plank's constant , 
Charge of electron , 
Mass of electron , m=9.11\times 10^{-31}\ kg.
We know , according to de broglie equation :

Now , we know potential energy applied on electron will be equal to its kinetic energy .
Therefore ,

Putting all values in above equation we get ,

Hence , this is the required solution.
Answer: Option (b) is the correct answer.
Explanation:
As Kristina is over training, therefore, there is pain in her muscles because human body also requires rest in order to work or function properly.
That is why, gym trainers suggest to give one day off in a week for your workout sessions so that body muscles should recover.
Thus, we can conclude that if Kristina is over training, then recovery training principle should Kristina consider before continuing her program.