Explanation:
It is given that,
The horizontal speed of a cliff diver, 
It reaches the water below 2.00 s later, t = 2 s
Let
is the distance where the diver hit the water. It can be calculated as follows :

Let
is the height of the cliff. It can be calculated using second equation of motion as follows :

So, the cliff is 19.6 m high and it will hit the water at a distance of 19.6 m.
Centripetal acceleration = (speed)² / (radius) .
Force = (mass) · (acceleration)
Centripetal force = (mass) · (speed)² / (radius) .
= (11 kg) · (3.5 m/s)² / (0.6 m)
= (11 kg) · (12.25 m²/s²) / (0.6 m)
= (11 · 12.25) / 0.6 kg-m/s²
= 224.58 newtons. (about 50.5 pounds)
That's the tension in Miguel's arm or leg or whatever part of his body
Jesse is swinging him by. It's the centripetal force that's needed in
order to swing 11 kg in a circle with a radius of 0.6 meter, at 3.5
meters/second. If the force is less than that, then the mass has to
either swing slower or else move out to follow a bigger circle.
Answer:
correct is d) a ’= g / 2
Explanation:
For this exercise let's use the kinematics equations
On earth
v = v₀ - a t
a = (v₀- v) / T
On planet X
v = v₀ - a' t’
a ’= (v₀-v) / 2T
Let's substitute the land values in plot X
a’= a / 2
Now let's use Newton's second law
W = ma
m g = m a
a = g
We substitute
a ’= g / 2
So we see that on planet X the acceleration is half the acceleration of Earth's gravity
Answer:
the hypotenuse = 13.78 cm
Ф = 27.44°
θ = 62.56°
explanation: