A. Evidence that supports the theory
Key concepts
Heart rate
Exercising
The heart
Cardiovascular system
Health
Introduction
As Valentine's Day approaches, we're increasingly confronted with "artistic" images of the heart. Real hearts hardly resemble to two-lobed shapes adorning cards and candy boxes this time of year. And the actual shape of the human heart is important for its function of supplying blood to the entire body. You have likely noticed that your heart beats more quickly when you exercise. But have you ever taken the time to observe how long it takes to return to its normal rate after you're done exercising? In this science activity you'll get to do some exercises to explore your own heart-rate recovery time.
Background
Your heart is continuously beating to keep blood circulating throughout your body. Its rate changes depending on your activity level; it is lower while you are asleep and at rest and higher while you exercise—to supply your muscles with enough freshly oxygenated blood to keep the functioning at a high level. Because your heart is also a muscle, exercise, in turn, helps keep it healthy. The American Heart Association recommends that a person does exercise that is vigorous enough to raise their heart rate to their target heart-rate zone—50 percent to 85 percent of their maximum heart rate, which is 220 beats per minute (bpm) minus their age for adults—for at least 30 minutes on most days, or about 150 minutes a week in total. So for a 20-year-old, the maximum heart rate would be 200 bpm, with a target heart-rate zone of 100 to 170 bpm. (For those 19 or younger, target zones can vary more than they do for adults.)
i think it will help you...if it help you ...please mark brainless
Answer: 580 N
Refer to attached figure.
The angle of inclination is 22 degrees
weight (gravitational force) acts downwards.
Normal force is a contact force which acts perpendicular to the point of contact.
The horizontal component (mg cos 22 ) balances the normal force and the vertical component balances the frictional force.
Gravitational force on an object = mg
The normal force 

Q: The small piston of a hydraulic lift has a cross-sectional of 3.00 cm2 and its large piston has a cross-sectional area of 200 cm2. What downward force of magnitude must be applied to the small piston for the lift to raise a load whose weight is Fg = 15.0 kN?
Answer:
225 N
Explanation:
From Pascal's principle,
F/A = f/a ...................... Equation 1
Where F = Force exerted on the larger piston, f = force applied to the smaller piston, A = cross sectional area of the larger piston, a = cross sectional area of the smaller piston.
Making f the subject of the equation,
f = F(a)/A ..................... Equation 2
Given: F = 15.0 kN = 15000 N, A = 200 cm², a = 3.00 cm².
Substituting into equation 2
f = 15000(3/200)
f = 225 N.
Hence the downward force that must be applied to small piston = 225 N
Behaviorists generally claimed that conditioning occurred without thinking or reasoning ans was simply a result of consequences or reinforcement. Cognitive psychologists demonstrated that thinking and reasoning (cognition) influences the conditioning processes and that many behaviors that are conditioned depend on the type of cognitive reasoning that occurs during conditioning. Therefore, as one is being conditioned to respond to environmental stimuli or is responding to a consequence, they are also pondering and thinking about the process occuring. Cognition is often the reason individuals are not all conditioned in the same manner.