Answer:
a. Springs oscillate with the same frequency
Explanation:
As they both are in the same height at equilibrium, so
weight of ball must be balanced with spring force, that is
k×x=mg
k= stiffness constant of spring
x=distance stretched
g= acceleration due to gravity
so, we can write
k/m=g/x
as the g is a constant and they stretched to same distance x so the g/x term becomes constant and

and k/m is same for both the springs so they will oscillate at the same frequency.
hence option a is correct.
Answer:
Final speed of car = 12 m/s
Explanation:
We have equation of motion v = u + at, where v is final velocity, u is initial velocity, a is acceleration and t is time.
a) A cart starts from rest and accelerates at 4.0 m/s² for 5.0 s
v = ?
u = 0 m/s
a = 4.0 m/s²
t = 5 s
v = u + at = 0 + 4 x 5 = 20 m/s
b) Then maintains that velocity for 10 s
v = ?
u = 20 m/s
a = 0 m/s²
t = 10 s
v = u + at = 20 + 0 x 10 = 20 m/s
c) Then decelerates at the rate of 2.0 m/s² for 4.0 s
v = ?
u = 20 m/s
a = -2.0 m/s²
t = 4 s
v = u + at = 20 + -2 x 4 = 12 m/s
Final speed of car = 12 m/s
Answer:
1.25 kgm²/sec
Explanation:
Disk inertia, Jd =
Jd = 1/2 * 3.7 * 0.40² = 0.2960 kgm²
Disk angular speed =
ωd = 0.1047 * 30 = 3.1416 rad/sec
Hollow cylinder inertia =
Jc = 3.7 * 0.40² = 0.592 kgm²
Initial Kinetic Energy of the disk
Ekd = 1/2 * Jd * ωd²
Ekd = 0.148 * 9.87
Ekd = 1.4607 joule
Ekd = (Jc + 1/2*Jd) * ω²
Final angular speed =
ω² = Ekd/(Jc+1/2*Jd)
ω² = 1.4607/(0.592+0.148)
ω² = 1.4607/0.74
ω² = 1.974
ω = √1.974
ω = 1.405 rad/sec
Final angular momentum =
L = (Jd+Jc) * ω
L = 0.888 * 1.405
L = 1.25 kgm²/sec
The strength of the magnetic field is 
Explanation:
According to Faraday's Law, the magnitude of the induced emf in the coil is equal to the rate of changeof the flux linkage through the coil:
(1)
where
N = 505 is the number of turns in the coil
is the change in magnetic flux through the coil
is the time interval

The coil is rotated from a position perpendicular to the Earth's magnetic field to a position parallel to it, so the final flux is zero, and the magnitude of the flux change is simply equal to the initial flux:

where
B is the strength of the magnetic field
A is the area of the coil
is the angle between the normal to the coil and the field
The area of the coil can be written as

where
is its radius
Substituting everything into eq.(1) and solving for B, we find:

Learn more about magnetic fields:
brainly.com/question/3874443
brainly.com/question/4240735
#LearnwithBrainly
Answer:
Magnetic field, B = 0.004 mT
Explanation:
It is given that,
Charge, 
Mass of charge particle, 
Speed, 
Acceleration, 
We need to find the minimum magnetic field that would produce such an acceleration. So,

For minimum magnetic field,



B = 0.004 T
or
B = 4 mT
So, the magnetic field produce such an acceleration at 4 mT. Hence, this is the required solution.