answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
quester [9]
2 years ago
13

Two masses hang below a massless meter stick. Mass 1 is located at the 10cm mark with a weight of 15kg, while mass 2 is located

at the 60cm mark with a weight of 30kg. At what point in between the two masses must the string be attached in order to balance the system?
Physics
1 answer:
yan [13]2 years ago
7 0

Answer:43.33 cm mark

Explanation:

Given

mass 1 is located at the 10 cm mark with weight of 15 kg

mass 2 is located at 60 cm mark with weight of 30 kg

string should be attached between them to balance the system

so the distance between the the two masses is 50 cm

For system to be balance torque of both the weight must nullify each other

Let us suppose string is at a distance of x cm from 15 kg mass so 30 kg mass is at a distance of 50-x cm

Balancing torque

15\times x-30\times (50-x)

x=\frac{100}{3}=33.33

so string should be at a mark of 10+33.33=43.33 cm

You might be interested in
Two identical ladders are 3.0 m long and weigh 600 N each. They are connected by a hinge at the top and are held together by a h
ruslelena [56]

Answer:

The tension in the rope is 281.60 N.

Explanation:

Given that,

Length = 3.0 m

Weight = 600 N

Distance = 1.0 m

Angle = 60°

Consider half of the ladder,

let tension be T, normal reaction force at ground be F, vertical reaction at top hinge be Y and horizontal reaction force be X.

Y+F=600....(I)

X=T.....(II)

On taking moment about base

X\times l\cos\theta+Y\times l\sin\theta-F\dfrac{l}{2}\sin\theta-T\times d=0

Put the value into the formula

X\times3\cos30+Y\times3\sin30-600\times1.5\sin30-T\times1=0

3\cos30 T-T=600\times1.5\sin30-Y \times3\sin30

1.598T=450-1.5(600-F)....(III)

We need to calculate the force for ladder

2F=600\trimes  2

F=600\ N

We need to calculate the tension in the rope

From equation (3)

1.598T=450-1.5(600-600)

1.598T=450

T=\dfrac{450}{1.598}

T=281.60\ N

Hence, The tension in the rope is 281.60 N.

7 0
2 years ago
Read 2 more answers
Ugonna stands at the top of an incline and pushes a 100−kg crate to get it started sliding down the incline. The crate slows to
Anna [14]

Answer:(a)891.64 N

(b)0.7

Explanation:

Mass of crate m=100 kg

Crate slows down in s=1.5 m

initial speed u=1.77 m/s

inclination \theta =30^{\circ}

From Work-Energy Principle

Work done by all the Forces is equal to change in Kinetic Energy

W_{friction}+W_{gravity}=\frac{1}{2}mv_i^2-\frac{1}{2}mv_f^2

W_{gravity}=mg(0-h)=mgs\sin \theta

W_{gravity}=-mgs\sin \theta

W_{gravity}=-100\times 9.8\times 1.5\sin 30=-735 N

change in kinetic energy=\frac{1}{2}\times 100\times 1.77^2=156.64 J

W_{friction}=156.64+735=891.645

(b)Coefficient of sliding friction

f_r\cdot s=W_{friciton}

891.645=f_r\times 1.5

f_r=594.43 N

and f_r=\mu mg\cos \theta

\mu 100\times 9.8\times \cos 30=594.43

\mu =0.7

5 0
2 years ago
The space shuttle is descending through the earth's atmosphere. How is the force of gravity affected?
polet [3.4K]
The answer would be C. It will decrease with descent. Hope this helps!
5 0
2 years ago
Read 2 more answers
what is the acceleration of a bowling ball that starts at rest and moves 300m down the gutter in 22.4 sec
exis [7]
<span>Acceleration is the change in velocity divided by time taken. It has both magnitude and direction. In this problem, the change in velocity would first have to be calculated. Velocity is distance divided by time. Therefore, the velocity here would be 300 m divided by 22.4 seconds. This gives a velocity of 13.3928 m/s. Since acceleration is velocity divided by time, it would be 13.3928 divided by 22.4, giving a final solution of 0.598 m/s^2.</span>
7 0
2 years ago
Two climbers are on a mountain. Simon, of mass m, is sitting on a snow covered slope that makes an angle θ with the horizontal.
elena-14-01-66 [18.8K]

Answer:

Explanation:

It is required that the weight of Joe must prevent Simon from being pulled down . That means he is not slipping down but tends to be towed down . So in equilibrium , force of friction will act in upward direction on Simon.

Let in equilibrium , tension in rope be T

For balancing Joe

T = M g

For balancing Simon

friction + T = mgsinθ

μmgcosθ+T = mgsinθ

μmgcosθ+Mg = mgsinθ

M = (msinθ - μmcosθ)

M = m(sinθ - μcosθ)

5 0
2 years ago
Other questions:
  • A rubber band has potential energy of 5 J. If the spring constant of the rubber band is 50 N/m, what is the displacement of the
    8·2 answers
  • What is tarzan's speed vf just before he reaches jane? express your answer in meters per second to two significant figures?
    7·1 answer
  • As Aubrey watches this merry-go-round for a total of 2 minutes, she notices the black horse pass by 15 times. What is the period
    11·2 answers
  • Two vectors are presented as a=3.0i +5.0j and b=2.0i+4.0j find (a) a x b, ab (c) (a+b)b and (d) the component of a along the dir
    15·1 answer
  • A thermally isolated system is made up of a hot piece of aluminum and a cold piece of copper; the aluminum and the copper are in
    5·1 answer
  • At a given instant of time, a car and a truck are traveling side by side in adjacent lanes of a highway. The car has a greater v
    8·1 answer
  • Samantha wants to study circus performance when she gets to college. She has mastered many physical skills already, but she keep
    13·2 answers
  • Suppose you analyze standardized test results for a country and discover almost identical distributions of physics scores for fe
    6·1 answer
  • In what way have mass extinctions catalyzed evolutionary radiation? Mass extinction events cause mutations, increasing the genet
    11·1 answer
  • Nate throws a ball straight up to Kayla, who is standing on a balcony 3.8 m above Nate. When she catches it, the ball is still m
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!