answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
quester [9]
2 years ago
13

Two masses hang below a massless meter stick. Mass 1 is located at the 10cm mark with a weight of 15kg, while mass 2 is located

at the 60cm mark with a weight of 30kg. At what point in between the two masses must the string be attached in order to balance the system?
Physics
1 answer:
yan [13]2 years ago
7 0

Answer:43.33 cm mark

Explanation:

Given

mass 1 is located at the 10 cm mark with weight of 15 kg

mass 2 is located at 60 cm mark with weight of 30 kg

string should be attached between them to balance the system

so the distance between the the two masses is 50 cm

For system to be balance torque of both the weight must nullify each other

Let us suppose string is at a distance of x cm from 15 kg mass so 30 kg mass is at a distance of 50-x cm

Balancing torque

15\times x-30\times (50-x)

x=\frac{100}{3}=33.33

so string should be at a mark of 10+33.33=43.33 cm

You might be interested in
Two balls of unequal mass are hung from two springs that are not identical. The springs stretch the same distance as the two sys
baherus [9]

Answer:

a. Springs oscillate with the same frequency

Explanation:

As they both are in the same height at equilibrium, so

weight of ball must be balanced with spring force, that is

k×x=mg

k= stiffness constant of spring

x=distance stretched

g= acceleration due to gravity

so,  we can write

k/m=g/x

as the g is a constant and they stretched to same distance x so the g/x term becomes constant and

f\propto\sqrt{k/m}

and k/m is same for both the springs so they will oscillate at the same frequency.

hence option a is correct.

3 0
2 years ago
A cart starts from rest and accelerates at 4.0 m/s2 for 5.0 s, then maintains that velocity for 10 s, and then decelerates at th
zhannawk [14.2K]

Answer:

Final speed of car = 12 m/s

Explanation:

We have equation of motion v = u + at, where v is final velocity, u is initial velocity, a is acceleration and t is time.

a) A cart starts from rest and accelerates at 4.0 m/s² for 5.0 s

        v = ?

        u = 0 m/s

        a = 4.0 m/s²

         t = 5 s

         v = u + at = 0 + 4 x 5 = 20 m/s

b) Then maintains that velocity for 10 s

        v = ?

        u = 20 m/s

        a = 0 m/s²

         t = 10 s

         v = u + at = 20 + 0 x 10 = 20 m/s

c) Then decelerates at the rate of 2.0 m/s² for 4.0 s

        v = ?

        u = 20 m/s

        a = -2.0 m/s²

         t = 4 s

         v = u + at = 20 + -2 x 4 = 12 m/s

Final speed of car = 12 m/s

3 0
1 year ago
A uniform disk has a mass of 3.7 kg and a radius of 0.40 m. The disk is mounted on frictionless bearings and is used as a turnta
yuradex [85]

Answer:

1.25 kgm²/sec

Explanation:

Disk inertia, Jd =

Jd = 1/2 * 3.7 * 0.40² = 0.2960 kgm²

Disk angular speed =

ωd = 0.1047 * 30 = 3.1416 rad/sec

Hollow cylinder inertia =

Jc = 3.7 * 0.40² = 0.592 kgm²

Initial Kinetic Energy of the disk

Ekd = 1/2 * Jd * ωd²

Ekd = 0.148 * 9.87

Ekd = 1.4607 joule

Ekd = (Jc + 1/2*Jd) * ω²

Final angular speed =

ω² = Ekd/(Jc+1/2*Jd)

ω² = 1.4607/(0.592+0.148)

ω² = 1.4607/0.74

ω² = 1.974

ω = √1.974

ω = 1.405 rad/sec

Final angular momentum =

L = (Jd+Jc) * ω

L = 0.888 * 1.405

L = 1.25 kgm²/sec

5 0
1 year ago
4. A 505-turn circular-loop coil with a diameter of 15.5 cm is initially aligned so that
Basile [38]

The strength of the magnetic field is 4.8\cdot 10^{-5} T

Explanation:

According to Faraday's Law, the magnitude of the induced emf in the coil is equal to the rate of changeof the flux linkage through the coil:

\epsilon = \frac{N\Delta \Phi}{\Delta t} (1)

where

N = 505 is the number of turns in the coil

\Delta \Phi is the change in magnetic flux through the coil

\Delta t = 2.77 ms = 2.77\cdot 10^{-3} s is the time interval

\epsilon = 0.166 V

The coil is rotated from a position perpendicular to the Earth's magnetic field to a position parallel to it, so the final flux is zero, and the magnitude of the flux change is simply equal to the initial flux:

\Delta \Phi = B A cos \theta

where

B is the strength of the magnetic field

A is the area of the coil

\theta=0^{\circ} is the angle between the normal to the coil and the field

The area of the coil can be written as

A=\pi r^2

where

r=\frac{15.5 cm}{2}=7.75 cm = 7.75\cdot 10^{-2} m is its radius

Substituting everything into eq.(1) and solving for B, we find:

\epsilon= \frac{NB\pi r^2 cos \theta}{\Delta t}\\B=\frac{\epsilon \Delta t}{\pi r^2 cos \theta}=\frac{(0.166)(2.77\cdot 10^{-3})}{(505)\pi (7.75\cdot 10^{-2})^2(cos 0^{\circ})}=4.8\cdot 10^{-5} T

Learn more about magnetic fields:

brainly.com/question/3874443

brainly.com/question/4240735

#LearnwithBrainly

8 0
1 year ago
Read 2 more answers
A charge q = 3 × 10-6 C of mass m = 2 × 10-6 kg, and speed v = 5 × 106 m/s enters a uniform magnetic field. The mass experiences
NeX [460]

Answer:

Magnetic field, B = 0.004 mT

Explanation:

It is given that,

Charge, q=3\times 10^{-6}\ C

Mass of charge particle, m=2\times 10^{-6}\ C

Speed, v=5\times 10^{6}\ m/s

Acceleration, a=3\times 10^{4}\ m/s^2

We need to find the minimum magnetic field that would produce such an acceleration. So,

ma=qvB\ sin\theta

For minimum magnetic field,

ma=qvB

B=\dfrac{ma}{qv}

B=\dfrac{2\times 10^{-6}\ C\times 3\times 10^{4}\ m/s^2}{3\times 10^{-6}\ C\times 5\times 10^{6}\ m/s}

B = 0.004 T

or

B = 4 mT

So, the magnetic field produce such an acceleration at 4 mT. Hence, this is the required solution.

4 0
2 years ago
Other questions:
  • Which of the following devices would you expect to consume the most energy for each hour that it operates? a portable tape recor
    7·2 answers
  • If a neutral object such as paper comes close to a positively charged plastic rod, what type of charge accumulates on the side o
    14·2 answers
  • Charge is distributed uniformly on the surface of a large flat plate. the electric field 2 cm from the plate is 30 n/c. the elec
    9·1 answer
  • What is the change in length of a 1400. m steel, (12x10^-6)/(C0) , pipe for a temperature change of 250.0 degrees Celsius? Remem
    11·1 answer
  • The current supplied by a battery slowly decreases as the battery runs down. Suppose that the current as a function of time is:
    6·1 answer
  • --->Two aircraft P and Q are flying at the same speed. 300 m/s, The direction along which P is flying is at right angles to t
    10·1 answer
  • Two identical conducting spheres, A and B, sit atop insulating stands. When they are touched, 1.51 × 1013 electrons flow from sp
    8·1 answer
  • A team of engineering students is testing their newly designed raft in the pool where the diving team practices.
    13·1 answer
  • By means of a rope whose mass is negligible, two blocks are suspended over a pulley, as the drawing shows. The pulley can be tre
    11·1 answer
  • A jet transport with a landing speed of 200 km/h reduces its speed to 60 km/h with a negative thrust R from its jet thrust rever
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!