answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anni [7]
2 years ago
15

Compare these two collisions of a PE student with a wall.

Physics
1 answer:
Stolb23 [73]2 years ago
3 0

1) The variable that is different in the two cases is \Delta t, the duration of the collision

2) The change in momentum is the same in the two cases

3) The impulse is the same in the two cases

4) Case B will experience a greater force

Explanation:

1)

The variable that is different in the two cases is \Delta t, the duration of the collision.

In fact, in the first case the wall is padded: this means that the collision will be "softer" and therefore will last longer, so the duration of the collision, \Delta t, will be larger.

In the second case instead, the wall is unpadded: this means that the collision is "harder" and so it will last less time, therefore the duration of the collision \Delta t will be smaller.

2)

The change in momentum in the two cases is the same.

In fact, the change in momentum is given by:

\Delta p = m(v-u)

where:

m is the mass of the student

u is the initial velocity

v is the final velocity

In both cases, we have:

m = 75 kg

u = 8 m/s

v = 0 (they both comes to rest)

Therefore, the change in momentum is

\Delta p = (75)(0-8)=-600 kg m/s

3)

The impulse in the two cases is the same.

In fact, impulse is defined as the product of force applied, F, and duration of the collision, \Delta t:

J=F \Delta t

However, the force can be rewritten as product of mass (m) and acceleration (a), according to Newton's second law:

F=ma

So the impulse is

J=ma\Delta t

The acceleration can be rewritten as rate of change of velocity:

a=\frac{\Delta v}{\Delta t}

So the impulse becomes

J=m\frac{\Delta v}{\Delta t}\Delta t = m\Delta v

So, the impulse is equal to the change in momentum: and since in the two cases the change in momentum is the same, the impulse is the same as well.

4)

The force in the collision is related to the impulse by

J=F\Delta t

where

J is the impulse

F is the force

\Delta t is the duration of the collision

The equation can be rewritten as

F=\frac{J}{\Delta t}

In the two situations described in the problem (A and B), we already said that the impulse is the same (because the change in momentum is the same). However, in case A (padded wall) the time \Delta t is longer, while in case B (unpadded wall) the time \Delta t is shorter: since the force F is inversely proportional to the duration of the collision, this means that in case B the student will experience a greatest force compared to case A.

Learn more about impulse:

brainly.com/question/9484203

#LearnwithBrainly

You might be interested in
A pilot in a small plane encounters shifting winds. He flies 26.0 km northeast, then 45.0 km due north. From this point, he flie
cluponka [151]

Answer:

a) v₃ = 19.54 km, b)  70.2º north-west

Explanation:

This is a vector exercise, the best way to solve it is finding the components of each vector and doing the addition

vector 1 moves 26 km northeast

let's use trigonometry to find its components

         cos 45 = x₁ / V₁

         sin 45 = y₁ / V₁

         x₁ = v₁ cos 45

         y₁ = v₁ sin 45

         x₁ = 26 cos 45

         y₁ = 26 sin 45

         x₁ = 18.38 km

         y₁ = 18.38 km

Vector 2 moves 45 km north

        y₂ = 45 km

Unknown 3 vector

          x3 =?

          y3 =?

Vector Resulting 70 km north of the starting point

           R_y = 70 km

we make the sum on each axis

X axis

      Rₓ = x₁ + x₃

       x₃ = Rₓ -x₁

       x₃ = 0 - 18.38

       x₃ = -18.38 km

Y Axis

      R_y = y₁ + y₂ + y₃

       y₃ = R_y - y₁ -y₂

       y₃ = 70 -18.38 - 45

       y₃ = 6.62 km

the vector of the third leg of the journey is

         v₃ = (-18.38 i ^ +6.62 j^ ) km

let's use the Pythagorean theorem to find the length

         v₃ = √ (18.38² + 6.62²)

         v₃ = 19.54 km

to find the angle let's use trigonometry

           tan θ = y₃ / x₃

           θ = tan⁻¹ (y₃ / x₃)

           θ = tan⁻¹ (6.62 / (- 18.38))

           θ = -19.8º

with respect to the x axis, if we measure this angle from the positive side of the x axis it is

          θ’= 180 -19.8

          θ’= 160.19º

I mean the address is

          θ’’ = 90-19.8

          θ = 70.2º

70.2º north-west

3 0
2 years ago
A system of two paint buckets connected by a lightweight rope is released from rest with the 12.0-kg bucket 2.00 m above the flo
NISA [10]

Explanation:

The given data is as follows.

    Mass of small bucket (m) = 4 kg

    Mass of big bucket (M) = 12 kg

    Initial velocity (v_{o}) = 0 m/s

    Final velocity (v_{f}) = ?

  Height H_{o} = h_{f} = 2 m

and,    H_{f} = h_{o} = 0 m

Now, according to the law of conservation of energy

         starting conditions = final conditions

  \frac{1}{2}MV^{2}_{o} + Mgh_{o} + \frac{1}{2}mv^{2}_{o} + mgh_{o} = \frac{1}{2}MV^{2}_{f} + Mgh_{f} + \frac{1}{2}mv^{2}_{f} + mgh_{f}

     \frac{1}{2}(12)(0)^{2} + (12)(9.81)(2) + \frac{1}{2}(4)(0)^{2} + (4)(9.81)(0) = \frac{1}{2}(12)V^{2}_{f} + (12)(9.81)(0) + \frac{1}{2}(4)V^{2}_{f} + (4)(9.81)(2)

                 235.44 = 8V^{2}_{f} + 78.48

                V_{f} = 4.43 m/s

Thus, we can conclude that the speed with which this bucket strikes the floor is 4.43 m/s.

3 0
1 year ago
A 6000 kg lorry is reversing into a parking space at a speed of 0.5 m/s but collides with a car. The crumple zone of the car sto
zysi [14]

Answer:

3000 kg.m/s

Explanation:

Momentum, p is a product of mass and velocity hence

p=mv where m is mass and v is velocity.

Change in momentum is given by m(v_f-v_i) where subscripts f and i represent final and initial respectively. Since the lorry finally comes to rest then the final velocity is zero. Substituting the given figures then

Change in momentum= 6000(0-0.5)=-3000 kg.m/s

7 0
2 years ago
Rachel is helping her younger brother replace a broken part in his toy ambulance. This part is responsible for converting electr
Studentka2010 [4]
The light bulb, it takes electrical energy and turns it into l<span>ight energy!</span>
5 0
2 years ago
Read 2 more answers
A particle has a velocity of v→(t)=5.0ti^+t2j^−2.0t3k^m/s.
Makovka662 [10]

Answer:

a)a=5 i+2t j - 6\ t^2k

b)a=\dfrac{1}{24.83}(5i+4j-24k)\ m/s^2

Explanation:

Given that

v(t) = 5 t i + t² j - 2 t³ k

We know that acceleration a is given as

a=\dfrac{dv}{dt}

\dfrac{dv}{dt}=5 i+2t j - 6\ t^2k

a=5 i+2t j - 6\ t^2k

Therefore the acceleration function a will be

a=5 i+2t j - 6\ t^2k

The acceleration at t = 2 s

a= 5 i + 2 x 2 j - 6 x 2² k  m/s²

a=5 i + 4 j -24 k m/s²

The magnitude of the acceleration will be

a=\sqrt{5^2+4^2+24^2}\ m/s^2

a= 24.83 m/s²

The direction of the acceleration a is given as

a=\dfrac{1}{24.83}(5i+4j-24k)\ m/s^2

a)a=5 i+2t j - 6\ t^2k

b)a=\dfrac{1}{24.83}(5i+4j-24k)\ m/s^2

5 0
2 years ago
Other questions:
  • Sam's bike tire contains 15 units of air particles and has a volume of 160mL. Under these conditions the pressure reads 13 psi.
    13·1 answer
  • Goal posts at the ends of football fields are padded as a safety measure for players who might run into them. How does thick pad
    9·2 answers
  • Justin signed a rental agreement for his condo. After he moved out, the owner determined that the condo needed to be cleaned, th
    14·2 answers
  • A small lab cart and one of larger mass collide and rebound off each other. Which of them has the greater average force on it du
    12·1 answer
  • A celebrating student throws a water balloon horizontally from a dormitory window that is 50 m above the ground. It hits the gro
    11·1 answer
  • A parallel-plate capacitor with a 4.9 mm plate separation is charged to 57 V . Part A With what kinetic energy, in eV, must a pr
    13·1 answer
  • You are driving on the highway, and you come to a steep downhill section. As you roll down the hill, you take your foot off the
    12·2 answers
  • A student attaches a block to a vertical spring so that the block-spring system will oscillate if the block-spring system is rel
    11·1 answer
  • A 1.2-m radius cylindrical region contains a uniform electric field along the cylinder axis. It is increasing uniformly with tim
    11·1 answer
  • 3. The expression 0.62 x10^3 is equivalent to...
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!