answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anni [7]
2 years ago
15

Compare these two collisions of a PE student with a wall.

Physics
1 answer:
Stolb23 [73]2 years ago
3 0

1) The variable that is different in the two cases is \Delta t, the duration of the collision

2) The change in momentum is the same in the two cases

3) The impulse is the same in the two cases

4) Case B will experience a greater force

Explanation:

1)

The variable that is different in the two cases is \Delta t, the duration of the collision.

In fact, in the first case the wall is padded: this means that the collision will be "softer" and therefore will last longer, so the duration of the collision, \Delta t, will be larger.

In the second case instead, the wall is unpadded: this means that the collision is "harder" and so it will last less time, therefore the duration of the collision \Delta t will be smaller.

2)

The change in momentum in the two cases is the same.

In fact, the change in momentum is given by:

\Delta p = m(v-u)

where:

m is the mass of the student

u is the initial velocity

v is the final velocity

In both cases, we have:

m = 75 kg

u = 8 m/s

v = 0 (they both comes to rest)

Therefore, the change in momentum is

\Delta p = (75)(0-8)=-600 kg m/s

3)

The impulse in the two cases is the same.

In fact, impulse is defined as the product of force applied, F, and duration of the collision, \Delta t:

J=F \Delta t

However, the force can be rewritten as product of mass (m) and acceleration (a), according to Newton's second law:

F=ma

So the impulse is

J=ma\Delta t

The acceleration can be rewritten as rate of change of velocity:

a=\frac{\Delta v}{\Delta t}

So the impulse becomes

J=m\frac{\Delta v}{\Delta t}\Delta t = m\Delta v

So, the impulse is equal to the change in momentum: and since in the two cases the change in momentum is the same, the impulse is the same as well.

4)

The force in the collision is related to the impulse by

J=F\Delta t

where

J is the impulse

F is the force

\Delta t is the duration of the collision

The equation can be rewritten as

F=\frac{J}{\Delta t}

In the two situations described in the problem (A and B), we already said that the impulse is the same (because the change in momentum is the same). However, in case A (padded wall) the time \Delta t is longer, while in case B (unpadded wall) the time \Delta t is shorter: since the force F is inversely proportional to the duration of the collision, this means that in case B the student will experience a greatest force compared to case A.

Learn more about impulse:

brainly.com/question/9484203

#LearnwithBrainly

You might be interested in
A 1.00-kilogram ball is dropped from the top of a building. just before striking the ground, the ball's speed is 12.0 meters per
Anarel [89]
During the fall, the potential energy stored in the ball is converted into kinetic energy.
Thus,
PE = KE before hitting the ground
= 1/2 • mv^2
= 1/2 • 1 • 12^2
= 72J
6 0
2 years ago
A dolphin swims due east for 1.90 km, then swims 7.20 km in the direction south of west. What are the magnitude and direction of
kykrilka [37]

Answer:

magnitude = 7.446 km, direction = 75.22° north of east

Explanation:

From the questions,

To get the the magnitude of the resultant vector we use Pythagoras theorem

a² = b²+c²

From the diagram,

y² = 1.9²+7.2²

y² = 55.45

y = √(55.45)

y = 7.446 km.

The direction of the dolphin is given as,

θ = tan⁻¹(7.2/1.9)

θ = tan⁻¹(3.7895)

θ = 75.22° north of east

Hence the magnitude of the resultant vector = 7.446 km, and it direction is 75.22° north of east

3 0
2 years ago
Which occurrence would lead you to conclude that lights are connected in a
skelet666 [1.2K]

Answer:B When one bulb burns out, all the others lights stay lit.

Explanation:

3 0
2 years ago
The expressions for e/m and the relative error of e/m due to all of the parameters measured:
bija089 [108]

Answer:

Term 1 = (0.616 × 10⁻⁵)

Term 2 = (7.24 × 10⁻⁵)

Term 3 = (174 × 10⁻⁵)

Term 4 = (317 × 10⁻⁵)

(σ ₑ/ₘ) / (e/m) = (499 × 10⁻⁵) to the appropriate significant figures.

Explanation:

(σ ₑ/ₘ) / (e/m) = (σᵥ /V)² + (2 σᵢ/ɪ)² + (2 σʀ /R)² + (2 σᵣ /r)²

mean measurements

Voltage, V = (403 ± 1) V,

σᵥ = 1 V, V = 403 V

Current, I = (2.35 ± 0.01) A

σᵢ = 0.01 A, I = 2.35 A

Coils radius, R = (14.4 ± 0.3) cm

σʀ = 0.3 cm, R = 14.4 cm

Curvature of the electron trajectory, r = (7.1 ± 0.2) cm.

σᵣ = 0.2 cm, r = 7.1 cm

Term 1 = (σᵥ /V)² = (1/403)² = 0.0000061573 = (0.616 × 10⁻⁵)

Term 2 = (2 σᵢ/ɪ)² = (2×0.01/2.35)² = 0.000072431 = (7.24 × 10⁻⁵)

Term 3 = (2 σʀ /R)² = (2×0.3/14.4)² = 0.0017361111 = (174 × 10⁻⁵)

Term 4 = (2 σᵣ /r)² = (2×0.2/7.1)² = 0.0031739734 = (317 × 10⁻⁵)

The relative value of the e/m ratio is a sum of all the calculated terms.

(σ ₑ/ₘ) / (e/m)

= (0.616 + 7.24 + 174 + 317) × 10⁻⁵

= (498.856 × 10⁻⁵)

= (499 × 10⁻⁵) to the appropriate significant figures.

Hope this Helps!!!

6 0
2 years ago
The newly formed xenon nucleus is left in an excited state. Thus, when it decays to a state of lower energy a gamma ray is emitt
nevsk [136]

Answer:3.87*10^-4

Explanation:

What is the decrease in mass, delta mass Xe , of the xenon nucleus as a result of this deca

We have been given the wavelength of the gamma ray, find the frequency using c = freq*wavelength.

C=f*lambda

3*10^8=f*3.44*10^-12

F=0.87*10^20 hz

Then with the frequency, find the energy emitted using equation

E=hf E = freq*Plank's constant

E=.87*10^20*6.62*10^-34

E=575.94*10^(-16)

With this energy, convert into MeV from joules.

With the energy in MeV, use E=mc^2 using c^2 = 931.5 MeV/u.

Plugging and computing all necessary numbers gives you

3.87*10^-4 u.

6 0
2 years ago
Other questions:
  • A worker pushes a 1.50 x 10^3 N crate with a horizontal force of 345 N a distance of 24.0 m. Assume the coefficient of kinetic f
    9·2 answers
  • A space shuttle was launched from the Earth to the moon. The average, or accepted, value of the distance of the Earth to the moo
    13·1 answer
  • A box is at rest on a ramp at an incline of 22°. The normal force on the box is 538 N.
    14·2 answers
  • A car is traveling north at 17.7m/s After 12 s its velocity is 14.1m/s in the same direction. Find the magnitude and direction o
    11·1 answer
  • A conducting rod (length = 80 cm) rotates at a constant angular rate of 15 revolutions per second about a pivot at one end. A un
    10·1 answer
  • A 45.0-kg person steps on a scale in an elevator. The scale reads 460 n. What is the magnitude of the acceleration of the elevat
    11·1 answer
  • Two parallel wires carry a current I in the same direction. Midway between these wires is a third wire, also parallel to the oth
    11·2 answers
  • A beam of unpolarized light with intensity I0 falls first upon a polarizer with transmission axis θTA,1 then upon a second polar
    6·1 answer
  • How much energy must be transferred out of the system as heat q to lower its temperature to 0∘c? express your answer numerically
    15·1 answer
  • Come si compongono due forze che agiscono in diversi punti di un corpo rigido? Oof
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!