answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anni [7]
2 years ago
15

Compare these two collisions of a PE student with a wall.

Physics
1 answer:
Stolb23 [73]2 years ago
3 0

1) The variable that is different in the two cases is \Delta t, the duration of the collision

2) The change in momentum is the same in the two cases

3) The impulse is the same in the two cases

4) Case B will experience a greater force

Explanation:

1)

The variable that is different in the two cases is \Delta t, the duration of the collision.

In fact, in the first case the wall is padded: this means that the collision will be "softer" and therefore will last longer, so the duration of the collision, \Delta t, will be larger.

In the second case instead, the wall is unpadded: this means that the collision is "harder" and so it will last less time, therefore the duration of the collision \Delta t will be smaller.

2)

The change in momentum in the two cases is the same.

In fact, the change in momentum is given by:

\Delta p = m(v-u)

where:

m is the mass of the student

u is the initial velocity

v is the final velocity

In both cases, we have:

m = 75 kg

u = 8 m/s

v = 0 (they both comes to rest)

Therefore, the change in momentum is

\Delta p = (75)(0-8)=-600 kg m/s

3)

The impulse in the two cases is the same.

In fact, impulse is defined as the product of force applied, F, and duration of the collision, \Delta t:

J=F \Delta t

However, the force can be rewritten as product of mass (m) and acceleration (a), according to Newton's second law:

F=ma

So the impulse is

J=ma\Delta t

The acceleration can be rewritten as rate of change of velocity:

a=\frac{\Delta v}{\Delta t}

So the impulse becomes

J=m\frac{\Delta v}{\Delta t}\Delta t = m\Delta v

So, the impulse is equal to the change in momentum: and since in the two cases the change in momentum is the same, the impulse is the same as well.

4)

The force in the collision is related to the impulse by

J=F\Delta t

where

J is the impulse

F is the force

\Delta t is the duration of the collision

The equation can be rewritten as

F=\frac{J}{\Delta t}

In the two situations described in the problem (A and B), we already said that the impulse is the same (because the change in momentum is the same). However, in case A (padded wall) the time \Delta t is longer, while in case B (unpadded wall) the time \Delta t is shorter: since the force F is inversely proportional to the duration of the collision, this means that in case B the student will experience a greatest force compared to case A.

Learn more about impulse:

brainly.com/question/9484203

#LearnwithBrainly

You might be interested in
You’ve been given the challenge of balancing a uniform, rigid meter-stick with mass M = 95 g on a pivot. Stacked on the 0-cm end
Mariulka [41]

Answer: d = 4750n/3.1+95n

Explanation:

Using the principle of moment to solve the question.

Sum of clockwise moments = sum of anti clockwise moments

Since there are n identical coins with mass 3.1g placed at point 0cm, 1 coin will have mass of 3.1/n grams

Taking moment about the pivot,

Mass 3.1/n grams will move anti-clockwisely while the mass 95g will move in the clockwise direction.

Since its a meter rule (100cm) the distance from the center mass(95g) to the pivot will be 50-d (check attachment for diagram).

To get 'd'

We have 3.1/n × d = 95 × (50-d)

3.1d/n = 4750-95d

3.1d = 4750n-95dn

3.1d+95dn=4750n

d(3.1+95n) = 4750n

d = 4750n/3.1+95n

6 0
2 years ago
At a local swimming pool, the diving board is elevated h = 5.5 m above the pool's surface and overhangs the pool edge by L = 2 m
Margaret [11]

Answer:

Part a)

t = \sqrt{\frac{2h}{g}}

Part b)

t = 1.06 s

Part c)

L  = 4.86 m

Explanation:

Part a)

The height of the diving board is given as

h = 5.5 m

now the speed of the diver is given as

v_0 = 2.7 m/s

when the diver will jump into the water then his displacement in vertical direction is same as that of height of diving board

So we will have

y = v_y t + \frac{1}{2}at^2

h = 0 + \frac{1}{2}gt^2

t = \sqrt{\frac{2h}{g}}

Part b)

t = \sqrt{\frac{2h}{g}}

plug in the values in the above equation

t = \sqrt{\frac{2(5.5 m)}{9.81}

t = 1.06 s

Part c)

Horizontal distance moved by the diver is given as

d = v_0 t

d = 2.7 \times 1.06

d = 2.86 m

so the distance from the edge of the pool is given as

L = 2.86 + 2

L  = 4.86 m

4 0
1 year ago
A hot air balloon must be designed to support a basket, cords, and one person for a total payload weight of 1300 N plus the addi
RSB [31]

Answer:

r = 4.44 m

Explanation:

 

For this exercise we use the Archimedes principle, which states that the buoyant force is equal to the weight of the dislodged fluid

         B = ρ g V

Now let's use Newton's equilibrium relationship

         B - W = 0

         B = W

The weight of the system is the weight of the man and his accessories (W₁) plus the material weight of the ball (W)

         σ = W / A

         W = σ A

The area of ​​a sphere is

           A = 4π r²

       W = W₁ + σ 4π r²

The volume of a sphere is

           V = 4/3 π r³

Let's replace

     ρ g 4/3 π r³ = W₁ + σ 4π r²

If we use the ideal gas equation

     P V = n RT

    P = ρ RT

    ρ = P / RT

 

    P / RT g 4/3 π r³ - σ 4 π r² = W₁

    r² 4π (P/3RT  r - σ) = W₁

Let's replace the values

     r² 4π (1.01 10⁵ / (3 8.314 (70 + 273)) r - 0.060) = 13000

     r² (11.81 r -0.060) = 13000 / 4pi

     r² (11.81 r - 0.060) = 1034.51

As the independent term is very small we can despise it, to find the solution

       r = 4.44 m

3 0
2 years ago
A two-resistor voltage divider employing a 2-k? and a 3-k? resistor is connected to a 5-V ground-referenced power supply to prov
vesna_86 [32]

Answer:

circuit sketched in first attached image.

Second attached image is for calculating the equivalent output resistance

Explanation:

For calculating the output voltage with regarding the first image.

Vout = Vin \frac{R_{2}}{R_{2}+R_{1}}

Vout = 5 \frac{2000}{5000}[/[tex][tex]Vout = 5 \frac{2000}{5000}\\Vout = 5 \frac{2}{5} = 2 V

For the calculus of the equivalent output resistance we apply thevenin, the voltage source is short and current sources are open circuit, resulting in the second image.

so.

R_{out} = R_{2} || R_{1}\\R_{out} = 2000||3000 = \frac{2000*3000}{2000+3000} = 1200

Taking into account the %5 tolerance, with the minimal bound for Voltage and resistance.  

if the -5% is applied to both resistors the Voltage is still 5V because the quotient  has 5% / 5% so it cancels. to be more logic it applies the 5% just to one resistor, the resistor in this case we choose 2k but the essential is to show that the resistors usually don't have the same value. applying to the 2k resistor we have:

Vout = 5 \frac{1900}{4900}\\Vout = 5 \frac{19}{49} = 1.93 V

Vout = 5 \frac{2100}{5100}\\Vout = 5 \frac{21}{51} = 2.05 V

R_{out} = R_{2} || R_{1}\\R_{out} = 1900||2850= \frac{1900*2850}{1900+2850} = 1140

R_{out} = R_{2} || R_{1}\\R_{out} = 2100||3150 = \frac{2100*3150 }{2100+3150 } = 1260

so.

V_{out} = {1.93,2.05}V\\R_{1} = {1900,2100}\\R_{2} = {2850,3150}\\R_{out} = {1140,1260}

4 0
2 years ago
A 1.50-m cylinder of radius 1.10 cm is made of a complicated mixture of materials. Its resistivity depends on the distance x fro
MArishka [77]

Answer:

Resistance = 3.35*10^{-4} Ω

Explanation:

Since resistance R = ρ\frac{L}{A}

whereas \rho(x) = a + bx^2

resistivity is given for two ends. At the left end resistivity is 2.25* 10^{-8} whereas x at the left end will be 0 as distance is zero. Thus

2.25*10^{-8} = a + b(0)^2\\ 2.25*10^{-8} = a + 0 \\2.25*10^{-8} = a

At the right end x will be equal to the length of the rod, so x = 1.50\\8.50*10^{-8} = (2.25*10^{-8}) + ( b* (1.50)^2 )\\8.50*10^{-8} - (2.25*10^{-8}) = b*2.25\\\frac{6.25*10^{-8}}{2.25}  = b\\b = 2.77 *10^{-8}

Thus resistance will be R = ρ\frac{L}{A}

where A = π r^2

so,

R = \frac{8.50*10^{-8} * 1.50}{3.14*(1.10*10^{-2})^2} \\R=3.35 * 10 ^{-4}

6 0
1 year ago
Other questions:
  • A plastic film moves over two drums. During a 4-s interval the speed of the tape is increased uniformly from v0 = 2ft/s to v1 =
    5·1 answer
  • A jet engine gets its thrust by taking in air, heating and compressing it, and
    11·1 answer
  • A 14000N car traveling at 25m/s rounds a curve of radius 200m. Find the following: a. The centripetal acceleration of the car.
    9·2 answers
  • A 50-kg sprinter accelerates from 0 to 11 m/s in 3.0 s. What is the power output for this rapid start?
    12·1 answer
  • A 0.500-kg object attached to a spring with a force constant of 8.00 N/m vibrates in simple harmonic motion with an amplitude of
    13·1 answer
  • A rope is attached to a block. The rope pulls on the block with a force of 240 N, at an angle of 40 degrees to the horizontal (t
    10·2 answers
  • What is the final position of the object if its initial position is x = 0.40 m and the work done on it is equal to 0.21 J? What
    14·1 answer
  • If the potential energy of the product is less than that of the reactants, the energy released when an activated complex forms a
    15·2 answers
  • An overhead projector lens is 32.0 cm from a slide (the object) and has a focal length of 30.1 cm. What is the magnification of
    5·1 answer
  • The natural direction of heat flow between two reservoirs depends on ....​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!