Answer:
a. 8.33 x 10 ⁻⁶ Pa
b. 8.19 x 10 ⁻¹¹ atm
c. 1.65 x 10 ⁻¹⁰ atm
d. 2.778 x 10 ⁻¹⁴ kg / m²
Explanation:
Given:
a.
I = 2500 W / m² , us = 3.0 x 10 ⁸ m /s
P rad = I / us
P rad = 2500 W / m² / 3.0 x 10 ⁸ m/s
P rad = 8.33 x 10 ⁻⁶ Pa
b.
P rad = 8.33 x 10 ⁻⁶ Pa *[ 9.8 x 10 ⁻⁶ atm / 1 Pa ]
P rad = 8.19 x 10 ⁻¹¹ atm
c.
P rad = 2 * I / us = ( 2 * 2500 w / m²) / [ 3.0 x 10 ⁸ m /s ]
P rad = 1.67 x 10 ⁻⁵ Pa
P₁ = 1.013 x 10 ⁵ Pa /atm
P rad = 1.67 x 10 ⁻⁵ Pa / 1.013 x 10 ⁵ Pa /atm = 1.65 x 10 ⁻¹⁰ atm
d.
P rad = I / us
ΔP / Δt = I / C² = [ 2500 w / m² ] / ( 3.0 x 10 ⁸ m/s)²
ΔP / Δt = 2.778 x 10 ⁻¹⁴ kg / m²
I would say its a positive cgarge
Answer:
V0=27.4 m/s; t=0.8 s
Explanation:
Final position y=37.0 m, time = 2.3 s; Initial position is set to be zero. We calculate the initial speed with the kinematics equation:
We solve for initial speed

Now, using the same expression we estimated time to first reach 18.5 m :
Second order equation with solutions
t1=0.8 s and t2=4.8 s
The first time corresponds to the first reach.
When the grasshoppers vertical velocity is exactly zero.
v = -g•t + v0.
v: vertical part of velocity. Is zero at maximum height.
g: 9.81
t: time you are looking for
v0: initial vertical velocity
Find the vertical part of the initial velocity, by using the angle at which the grasshopper jumps.
Thermal energy energy that has hot cold or warm
Temp.Energy is the out come of the thermal engery and affects Earth and space