answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andre [41]
2 years ago
14

Plug variables expressed in SI units in the kinematic equation given in article: a = -v0^2/(2sg). What value of g you get as exp

ressed in g's where g = 9.8 m/s^2 1 point the same as in English units smaller larger this calculation cannot be performed in SI units If the initial velocity of player is doubled then the absolute acceleration would * 1 point decrease 2x stays the same increase 2x increase 4x If stopping distance is decreased 2x then the acceleration would * 1 point decrease 2x stay the same increase 2x increase 4x Other: Hockey player having initial velocity 20 m/s and helmet having padding 5 cm hits head on his twin brother. The acceleration of his brain is most closely equal to * 1 point 0.4g 4g 40g 400g
Physics
1 answer:
Elanso [62]2 years ago
6 0

Answer:

1) acceleration is increased by a factor of four 4X

2) the acceleration increases a factor of 2X

3) the correct answer of 400g

Explanation:

This is a kinematics exercise, where you use the velocity equation to obtain the acceleration, with the final velocity equal to zero.

           v² = v₀² + 2 a x

           0 = v₀² + 2 a x

           a = - v₀² / 2 x

           

In the case of wanting to give the acceleration as a function of g, we can find the relationship between the two quantities

         a / g = - v₀² / (2 x g)

Let's answer the different questions about this equation

1. The initial velocity is doubled, how much the acceleration is worth

           

       a/g = - (2v₀) 2 / 2xg

       a = 4 (-v₀² / 2xg) g

acceleration is increased by a factor of four 4X

2. if the stopping distance is reduced by 2, that is, x = x₀ / 2

we substitute

        a/g = (- v₀² / 2g) 2/x

         

        a =2  (-v₀² / 2x₀g)  g

       

therefore the acceleration increases a factor of 2X

3. the initial velocity of the hockey player is v₀ = 20 m / s and the stopping distance is

x = 5cm = 0.05m

we calculate the acceleration

        a / g = - 20² / (2 0.05)

        a / g = - 4000 / g

        a / g = - 4000 / 9.8 = 408

        a = 408 g

the correct answer of 400g, the value matches exactly if g = 10 m / s2 is taken

You might be interested in
A cart starts from rest and accelerates at 4.0 m/s2 for 5.0 s, then maintains that velocity for 10 s, and then decelerates at th
zhannawk [14.2K]

Answer:

Final speed of car = 12 m/s

Explanation:

We have equation of motion v = u + at, where v is final velocity, u is initial velocity, a is acceleration and t is time.

a) A cart starts from rest and accelerates at 4.0 m/s² for 5.0 s

        v = ?

        u = 0 m/s

        a = 4.0 m/s²

         t = 5 s

         v = u + at = 0 + 4 x 5 = 20 m/s

b) Then maintains that velocity for 10 s

        v = ?

        u = 20 m/s

        a = 0 m/s²

         t = 10 s

         v = u + at = 20 + 0 x 10 = 20 m/s

c) Then decelerates at the rate of 2.0 m/s² for 4.0 s

        v = ?

        u = 20 m/s

        a = -2.0 m/s²

         t = 4 s

         v = u + at = 20 + -2 x 4 = 12 m/s

Final speed of car = 12 m/s

3 0
2 years ago
Suppose you push a hockey puck of mass m across frictionless ice for a time 1.0 s, starting from rest, giving the puck speed v a
EleoNora [17]
Newton's second law ...Force = momentum change/time.momentum change = Forcextme.also, F=ma -> a=F/m - the more familiar form of Newton's second law
using one of the kinematic equations for m ...  V=u+at; u=0; a=F/m -> V=(F/m)xt.-> t=mV/F using one of the kinematic equations for 2m ... V=u+at; u=0; a=F/2m -> V=(F/2m)xt. -> t=2mV/F (twice as long, maybe ?)
I think I've made a mistake somewhere below, but I think that the principle is right ...using one of the kinematic equations for m ...  s=ut + (1/2)at^2); s=d;u=0;a=F/m; t=1;  -> d=(1/2)(F/m)=F/2musing one of the kinematic equations for 2m ...  s=ut + (1/2)at^2); s=d;u=0;a=F/2m; t=1;  -> d=(1/2)(F/2m)=F/4m (half as far ????? WHAT ???)
3 0
2 years ago
Read 2 more answers
Cathode ray tubes in old television sets worked by accelerating electrons and then deflecting them with magnetic fields onto a p
Roman55 [17]

Answer:

B = 0.046T

Explanation:

given

size of the screen = 51.2cm

distance from center = 11.1cm

region of magnetic field = 1.00cm

V= 22000V= 22kV

 

3 0
2 years ago
A distance of 2.00 mm separates two objects of equal mass. If the gravitational force between them is 0.0104 N, find the mass of
aleksklad [387]

Given the distance r = 2/1000 m, the force between them F = 0.0104 N, the mass of the two object can be calculated using formula:

F = G(m1m2)/r^2 since the mass are equal F = G (m^2)/r^2

And where G = is the gravitational constant (6.67E-11 m3 s-2 kg-1)

The mass of the two objects are 24.96 kg

6 0
1 year ago
The wheels of the locomotive push back on the tracks with a constant net force of 7.50 × 105 N, so the tracks push forward on th
Rasek [7]

Answer:

The freight train would take 542.265 second to increase the speed of the train from rest to 80.0 kilometers per hour.

Explanation:

Statement is incomplete. Complete description is presented below:

<em>A freight train has a mass of </em>1.83\times 10^{7}\,kg<em>. The wheels of the locomotive push back on the tracks with a constant net force of </em>7.50\times 10^{5}\,N<em>, so the tracks push forward on the locomotive with a force of the same magnitude. Ignore aerodynamics and friction on the other wheels of the train. How long, in seconds, would it take to increase the speed of the train from rest to 80.0 kilometers per hour?</em>

If locomotive have a constant net force (F), measured in newtons, then acceleration (a), measured in meters per square second, must be constant and can be found by the following expression:

a = \frac{F}{m} (1)

Where m is the mass of the freight train, measured in kilograms.

If we know that F = 7.50\times 10^{5}\,N and m = 1.83\times 10^{7}\,kg, then the acceleration experimented by the train is:

a = \frac{7.50\times 10^{5}\,N}{1.83\times 10^{7}\,kg}

a = 4.098\times 10^{-2}\,\frac{m}{s^{2}}

Now, the time taken to accelerate the freight train from rest (t), measured in seconds, is determined by the following formula:

t = \frac{v-v_{o}}{a} (2)

Where:

v - Final speed of the train, measured in meters per second.

v_{o} - Initial speed of the train, measured in meters per second.

If we know that a = 4.098\times 10^{-2}\,\frac{m}{s^{2}}, v_{o} = 0\,\frac{m}{s} and v = 22.222\,\frac{m}{s}, the time taken by the freight train is:

t = \frac{22.222\,\frac{m}{s}-0\,\frac{m}{s}  }{4.098\times 10^{-2}\,\frac{m}{s^{2}} }

t = 542.265\,s

The freight train would take 542.265 second to increase the speed of the train from rest to 80.0 kilometers per hour.

6 0
1 year ago
Other questions:
  • What is the change in length of a 1400. m steel, (12x10^-6)/(C0) , pipe for a temperature change of 250.0 degrees Celsius? Remem
    11·1 answer
  • A 72.0-kg person pushes on a small doorknob with a force of 5.00 N perpendicular to the surface of the door. The doorknob is loc
    15·1 answer
  • A mountain 10.0 km from a person exerts a gravitational force on him equal to 2.00% of his weight. (a) Calculate the mass of the
    15·1 answer
  • Carefully consider how the accelerations a1 and a2 are related. Solve for the magnitude of the acceleration, a1, of the block of
    6·1 answer
  • Assuming that you remain a finite distance from the origin, where in the X-Y plane could a point charge Q be placed, so that thi
    5·1 answer
  • A train composed of a small engine car and a massive cargo car are connected as they move along a track. The speed of the small
    14·1 answer
  • Students were discussing a problem in which the class was asked to find the acceleration of a cart rolling up and down an inclin
    11·1 answer
  • ________ amplitudes are associated with ________ sounds.
    5·1 answer
  • Unit of work is derived unit why​
    7·1 answer
  • A gas has an initial volume of 24.6 L at a pressure of 1.90 atm and a temperature of 335 K. The pressure of the gas increases to
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!