Answer:
v=13.4 m/s
Explanation:
The centripetal acceleration the car experiments is due to friction, so what we need is to write our equation using the maximum static friction, which is the case on the verge of sliding:

Which means (since we are in a horizontal surface):

So the maximum speed before sliding is:

Which for our values is:

The block Z would be seen in figure 10 when 4 strident turn around
Answer:
Two identical closely spaced circular disks form a parallel-plate capacitor. Transferring 2.1×109 electrons from one disk to the other causes the electric field strength between them to be 1.6×105 N/C. What are the diameters of the disks?
Explanation:
Check attachment for solution
Answer:
a) v₃ = 19.54 km, b) 70.2º north-west
Explanation:
This is a vector exercise, the best way to solve it is finding the components of each vector and doing the addition
vector 1 moves 26 km northeast
let's use trigonometry to find its components
cos 45 = x₁ / V₁
sin 45 = y₁ / V₁
x₁ = v₁ cos 45
y₁ = v₁ sin 45
x₁ = 26 cos 45
y₁ = 26 sin 45
x₁ = 18.38 km
y₁ = 18.38 km
Vector 2 moves 45 km north
y₂ = 45 km
Unknown 3 vector
x3 =?
y3 =?
Vector Resulting 70 km north of the starting point
R_y = 70 km
we make the sum on each axis
X axis
Rₓ = x₁ + x₃
x₃ = Rₓ -x₁
x₃ = 0 - 18.38
x₃ = -18.38 km
Y Axis
R_y = y₁ + y₂ + y₃
y₃ = R_y - y₁ -y₂
y₃ = 70 -18.38 - 45
y₃ = 6.62 km
the vector of the third leg of the journey is
v₃ = (-18.38 i ^ +6.62 j^ ) km
let's use the Pythagorean theorem to find the length
v₃ = √ (18.38² + 6.62²)
v₃ = 19.54 km
to find the angle let's use trigonometry
tan θ = y₃ / x₃
θ = tan⁻¹ (y₃ / x₃)
θ = tan⁻¹ (6.62 / (- 18.38))
θ = -19.8º
with respect to the x axis, if we measure this angle from the positive side of the x axis it is
θ’= 180 -19.8
θ’= 160.19º
I mean the address is
θ’’ = 90-19.8
θ = 70.2º
70.2º north-west
Answer:
Horizontal component: 
Vertical component: 
Explanation:
To find the horizontal and vertical components of the force, we just need to multiply the magnitude of the force by the cosine and sine of the angle with the horizontal, respectively.
Therefore, for the horizontal component, we have:



For the vertical component, we have:



So the horizontal component of the tension force is 58 N and the vertical component is 33.5 N.