Answer:
80% (Eighty percent)
Explanation:
The material has a refractive index (n) of 1.25
Speed of light in a vacuum (c) is 2.99792458 x 10⁸ m/s
We can find the speed of light in the material (v) using the relationship
n = c/v, similarly
v = c/n
therefore v = 2.99792458 x 10⁸ m/s ÷ (1.25) = 239 833 966 m/s
v = 239 833 966 m/s
Therefore the percentage of the speed of light in a vacuum that is the speed of light in the material can be calculated as
(v/c) × 100 = (1/n) × 100 = (1/1.25) × 100 = 0.8 × 100 = 80%
Therefore speed of light in the material (v) is eighty percent of the speed of light in the vacuum (c)
Answer:
The correct answer is a rarefaction.
Explanation:
Sound waves are longitudinal waves that propagate in a medium, such as air. As the vibration continues, a series of successive condensations and rarefactions form and propagate from it. The pattern created in the air is something like a sinusoidal curve to represent a sound wave.
There are peaks in the sine wave at the points where the sound wave has condensations and valleys where it has rarefactions.
Have a nice day!
Answer:
46% (0.46)
Explanation:
temperature of hot reservoir (Th) = 1.3 kJ
temperature of COLD reservoir (Tc) = 0.7 kJ
Efficiency = 1 - (Tc/Th)
Efficiency = 1 - (0.7/1.3) = 0.46 = 0.46 x 100 = 46 %
Answer:
C) the Fahrenheit thermometer is incorrect
Explanation:
Since
1) K = °C + 273
2) °F = 9/5 °C + 32
for 0 °C
1) K = 0°C + 273 = 273 K
2) °F = 9/5 * 0°C + 32 = 32 °F
Thus the Kelvin thermometer measurement coincides with the Celsius measurement but not with the °F . On the other hand, if the Fahrenheit measurement is right, the Celsius thermometer and the Kelvin one should be wrong.
Therefore is more reasonable to assume that one thermometer failed (the one of Fahrenheit and both Kelvin and Celsius are right ) that 2 thermometers ( Celsius and Kelvin thermometers fail and the one of Fahrenheit is right)
The most common measuring device to be used in measuring enthalpy changes is the thermometer.