answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ipatiy [6.2K]
2 years ago
10

Consider a horizontal layer of the dam wall of thickness dx located a distance x above the reservoir floor. What is the magnitud

e dF of the force on this layer that results from adding the water to the reservoir? Express your answer in terms of x, dx, the magnitude of the acceleration due to gravity g, and any quantities from the problem introduction.

Physics
1 answer:
adoni [48]2 years ago
6 0

Answer:

Explanation:

Attached is the solution

You might be interested in
A ball is dropped from the top of a building.After 2 seconds, it’s velocity is measured to be 19.6 m/s. Calculate the accelerati
zlopas [31]

Answer:

acceleration, a = 9.8 m/s²

Explanation:

'A ball is dropped from the top of a building' indicates that the initial velocity of the ball is zero.

u = 0 m/s

After 2 seconds, velocity of the ball is 19.6 m/s.

t = 2s, v = 19.6 m/s

Using

v = u + at

19.6 = 0 + 2a

a = 9.8 m/s²

6 0
2 years ago
Read 2 more answers
Two wires are stretched between two fixed supports and have the same length. One wire A there is a second-harmonic standing wave
lina2011 [118]

(a) Greater

The frequency of the nth-harmonic on a string is an integer multiple of the fundamental frequency, f_1:

f_n = n f_1

So we have:

- On wire A, the second-harmonic has frequency of f_2 = 660 Hz, so the fundamental frequency is:

f_1 = \frac{f_2}{2}=\frac{660 Hz}{2}=330 Hz

- On wire B, the third-harmonic has frequency of f_3 = 660 Hz, so the fundamental frequency is

f_1 = \frac{f_3}{3}=\frac{660 Hz}{3}=220 Hz

So, the fundamental frequency of wire A is greater than the fundamental frequency of wire B.

(b) f_1 = \frac{v}{2L}

For standing waves on a string, the fundamental frequency is given by the formula:

f_1 = \frac{v}{2L}

where

v is the speed at which the waves travel back and forth on the wire

L is the length of the string

(c) Greater speed on wire A

We can solve the formula of the fundamental frequency for v, the speed of the wave:

v=2Lf_1

We know that the two wires have same length L. For wire A, f_1 = 330 Hz, while for wave B, f_B = 220 Hz, so we can write the ratio between the speeds of the waves in the two wires:

\frac{v_A}{v_B}=\frac{2L(330 Hz)}{2L(220 Hz)}=\frac{3}{2}

So, the waves travel faster on wire A.

7 0
1 year ago
Which statement about energy conservation BEST explains why a bouncing basketball will not remain in motion forever?
bearhunter [10]

Answer: d

Explanation:

7 0
1 year ago
A wire carrying a current of 10 A and 2 m in length is placed in a field of flux density 0.15 T. What’s the force on the wire if
saul85 [17]

Explanation:

I = 10A

l = 2m

B = 0.15T

F = ?

a) ¶ = 90

F = BILsin¶

F = 0.15×10×2×sin90

F = 3N

b) ¶ = 45 degree

F = BILsin¶

F = 0.15×10×2×sin45

F = 2.12N

c) ¶ = 0 degree

F = BILsin¶

F = 0.15×10×2×sin0

F = 0

Goodluck

7 0
1 year ago
A monoatomic ideal gas undergoes an isothermal expansion at 300 K, as the volume increased from 0.010 m^3 to 0.040 m^3. The fina
Natali [406]

Answer:

A) 0.0 kJ

Explanation:

Change in the internal energy of the gas is a state function

which means it will not depends on the process but it will depends on the initial and final state

Also we know that internal energy is a function of temperature only

so here the process is given as isothermal process in which temperature will remain constant always

here we know that

\Delta U = \frac{3}{2}nR\Delta T

now for isothermal process since temperature change is zero

so change in internal energy must be ZERO

4 0
1 year ago
Other questions:
  • Moving company uses a machine to raise a 900 Newton refrigerator to the second floor of a building machine consists of a single
    8·2 answers
  • A rock is thrown horizontally at a speed of 5.0 m/s from the top of a cliff 64.7 m high. The rock hits the ground 18.0 m from th
    14·2 answers
  • An apple falls from an apple tree growing on a 20° slope. The apple hits the ground with an impact velocity of 16.2 m/s straight
    12·1 answer
  • An upward force is applied to a 6.0–kilogram box. This force displaces the box upward by 10.00 meters. What is the work done by
    8·1 answer
  • A nonuniform, but spherically symmetric, distribution of charge has a charge density ρ(r) given as follows:
    13·1 answer
  • What would be the kinetic energy k2q of charge 2q at a very large distance from the other charges? express your answer in terms
    5·1 answer
  • You skip north for 12 minutes to your best friend's house that is 1.5 kilometers away. What is your average velocity?
    7·1 answer
  • A student redid the experiment of mixing room-temperature water and warm
    11·1 answer
  • A student must design an experiment to determine the relationship between the mass of an object and the resulting acceleration w
    8·1 answer
  • A student determines the density, solubility, and boiling point of two liquids, Liquid 1 and Liquid 2. Then he stirs the two liq
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!