answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
soldi70 [24.7K]
2 years ago
12

A ball is dropped from the top of a building.After 2 seconds, it’s velocity is measured to be 19.6 m/s. Calculate the accelerati

on for the dropped ball.
Physics
2 answers:
Elza [17]2 years ago
7 0

Explanation:

The given data is as follows.

        Initial velocity; u = 0,        Final velocity; v = 19.6 m/s

        time; t = 2 seconds

As the relation between initial velocity, final velocity and acceleration is as follows.

                         v = u + at

Hence, putting the given values into the above formula as follows.

                       v = u + at

           19.6 m/s = 0 + a \times 2 sec

                   a = 9.8 m/s^{2}              

Thus, we can conclude that acceleration of the dropped ball is 9.8 m/s^{2}.

zlopas [31]2 years ago
6 0

Answer:

acceleration, a = 9.8 m/s²

Explanation:

'A ball is dropped from the top of a building' indicates that the initial velocity of the ball is zero.

u = 0 m/s

After 2 seconds, velocity of the ball is 19.6 m/s.

t = 2s, v = 19.6 m/s

Using

v = u + at

19.6 = 0 + 2a

a = 9.8 m/s²

You might be interested in
A charge Q is uniformly spread over one surface of a very large nonconducting square elastic sheet having sides of length d. At
GuDViN [60]

Answer:

E/4

Explanation:

The formula for electric field of a very large (essentially infinitely large) plane of charge is given by:

E = σ/(2ε₀)

Where;

E is the electric field

σ is the surface charge density

ε₀ is the electric constant.

Formula to calculate σ is;

σ = Q/A

Where;

Q is the total charge of the sheet

A is the sheet's area.

We are told the elastic sheet is a square with a side length as d, thus ;

A = d²

So;

σ = Q/d²

Putting Q/d² for σ in the electric field equation to obtain;

E = Q/(2ε₀d²)

Now, we can see that E is inversely proportional to the square of d i.e.

E ∝ 1/d²

The electric field at P has some magnitude E. We now double the side length of the sheet to 2L while keeping the same amount of charge Q distributed over the sheet.

From the relationship of E with d, the magnitude of electric field at P will now have a quarter of its original magnitude which is;

E_new = E/4

3 0
2 years ago
A certain satellite travels in an approximately circular orbit of radius 2.0 × 106 m with a period of 7 h 11 min. Calculate the
kap26 [50]

Answer: Mass of the planet, M= 8.53 x 10^8kg

Explanation:

Given Radius = 2.0 x 106m

Period T = 7h 11m

Using the third law of kepler's equation which states that the square of the orbital period of any planet is proportional to the cube of the semi-major axis of its orbit.

This is represented by the equation

T^2 = ( 4π^2/GM) R^3

Where T is the period in seconds

T = (7h x 60m + 11m)(60 sec)

= 25860 sec

G represents the gravitational constant

= 6.6 x 10^-11 N.m^2/kg^2 and M is the mass of the planet

Making M the subject of the formula,

M = (4π^2/G)*R^3/T^2

M = (4π^2/ 6.6 x10^-11)*(2×106m)^3(25860s)^2

Therefore Mass of the planet, M= 8.53 x 10^8kg

5 0
2 years ago
Un tubo de acero de 40000 kilómetros forma un anillo que se ajusta bien a la circunferencia de la tierra. Imagine que las person
Darina [25.2K]

Answer:

82.76m

Explanation:

In order to find the distance of the steel ring to the ground, when its temperature has raised by 1°C, you first calculate the radius of the steel tube before its temperature increases.

You use the formula for the circumference of the steel ring:

C=2\pi r    (1)

C: circumference of the ring = 40000 km = 4*10^7m (you assume the circumference is the length of the steel tube)

you solve for r in the equation (1):

r=\frac{C}{2\pi}=\frac{4*10^7m}{2\pi}=6,366,197.724m

Next, you use the following formula to calculate the change in the length of the tube, when its temperature increases by 1°C:

L=Lo[1+\alpha \Delta T]         (2)

L: final length of the tube = ?

Lo: initial length of the tube = 4*10^7m

ΔT = change in the temperature of the steel tube = 1°C

α: thermal coefficient expansion of steel = 13*10^-6 /°C

You replace the values of the parameters in the equation (2):

L=(4*10^7m)(1+(13*10^{-6}/ \°C)(1\°C))=40,000,520m

With the new length of the tube, you can calculate the radius of a ring formed with the tube. You again solve the equation (1) for r:

r'=\frac{C}{2\pi}=\frac{40,000,520m}{2\pi}=6,366,280.484m

Finally, you compare both r and r' radius:

r' - r = 6,366,280.484m - 6,366,197.724m = 82.76m

Hence, the distance to the ring from the ground is 82.76m

4 0
2 years ago
Water at 20°C flows by gravity through a smooth pipe from one reservoir to a lower one. The elevation difference is 60 m. The pi
Serga [27]

Answer:

Flow Rate = 80 m^3 /hours  (Rounded to the nearest whole number)

Explanation:

Given

  • Hf = head loss
  • f = friction factor
  • L = Length of the pipe = 360 m
  • V = Flow velocity, m/s
  • D = Pipe diameter = 0.12 m
  • g = Gravitational acceleration, m/s^2
  • Re = Reynolds's Number
  • rho = Density =998 kg/m^3
  • μ = Viscosity = 0.001 kg/m-s
  • Z = Elevation Difference = 60 m

Calculations

Moody friction loss in the pipe = Hf = (f*L*V^2)/(2*D*g)

The energy equation for this system will be,

Hp = Z + Hf

The other three equations to solve the above equations are:

Re = (rho*V*D)/ μ

Flow Rate, Q = V*(pi/4)*D^2

Power = 15000 W = rho*g*Q*Hp

1/f^0.5 = 2*log ((Re*f^0.5)/2.51)

We can iterate the 5 equations to find f and solve them to find the values of:

Re = 235000

f = 0.015

V = 1.97 m/s

And use them to find the flow rate,

Q = V*(pi/4)*D^2

Q = (1.97)*(pi/4)*(0.12)^2 = 0.022 m^3/s = 80 m^3 /hours

7 0
2 years ago
Energy conservation with conservative forces: Two identical balls are thrown directly upward, ball A at speed v and ball B at sp
MatroZZZ [7]

Answer:

E) True.   Ball B will go four times as high as ball A because it had four times the initial kinetic energ

Explanation:

To answer the final statements, let's pose the solution of the exercise

Energy is conserved

Initial

          Em₀ = K

          Em₀ = ½ m v²

Final

         Emf = U = mg h

         Em₀ = emf

        ½ m v² = mgh

        h = v² / 2g

For ball A

         h_A = v² / 2g

For ball B

        h_B = (2v)² / 2g

        h_B = 4 (v² / 2g) = 4 h_A

Let's review the claims

A) False. The neck acceleration is zero, it has the value of the acceleration of gravity

B) False. Ball B goes higher

C) False  has 4 times the gravitational potential energy than ball A

D) False.  It goes 4 times higher

E) True.

6 0
2 years ago
Other questions:
  • A body A of mass 1.5kg, travelling along the positive x-axis with speed 4.5m/s, collides with another body B of mass 3.2kg which
    14·1 answer
  • A 9V battery is directly connected to each of 3 LED bulbs. Select the statement that accurately describes this circuit. A) A dir
    5·2 answers
  • A 145-g baseball is thrown so that it acquires a speed of 25 m/s. What was the net work done on the ball to make it reach this s
    10·1 answer
  • A 60 kg Gila monster on a merry-go-round is traveling in a circle with a radius of 3 m, rotating at a rate of 9 revolutions/minu
    9·1 answer
  • A baking dish is removed from a hot oven and placed on a cooling rack. As the dish cools down to 35 C from 175 C, its net radian
    7·1 answer
  • The water level in a tank is 20 m above the ground. a hose is connected to the bottom of the tank, and the nozzle at the end of
    15·1 answer
  • When laser light shines on a screen after passing through two closely spaced slits, it becomes
    9·1 answer
  • A simple arrangement by means of which e.m.f,s. are compared is known
    8·1 answer
  • 49. A vertically hung 0.50-meter- long spring is stretched from its equilibrium position to a length of 1.00 meter by a weight a
    6·1 answer
  • A major disturbance that caused the ecosystem to stabilize at a new equilibrium?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!