In the absence of air resistance ...
-- The ball has no horizontal acceleration at any point in its flight.
-- The ball's vertical acceleration is 9.8 meters per second-squared downward
at every point its flight, from the moment it leaves the toe of the kicker until it hits
the ground.
Answer: 0.56 m/s
Explanation:
hello, there is 25° inclination angle for the chute in the drawing. Thankfully, I know this problem. The conservation of momentum.
so there are X and Y components for the momentum in this problem. The Y component is not conserved as when the coal gets in the cart, the normal force exerted by the surface reduces it to 0.
Now, the X component is definitely conserved here.
so you have the momentum of the cart which is 440*0.5 added to the momentum of the chunk which is 150*0.8*cos(25°), that is the momentum before the coupling between the objects. Afterwards both objects will have the same velocity, so we write the equation like this:

Answer: c. 4.56 × 105 J
Explanation:
Given that
mass of lead brick, m= 7.25kg
Temperature T1 = 18.0 °C
Temperature T2 = 328 °C
specific heat capacity of lead, c = 128 J/(kg∙C°)
latent heat of fusion Lfusion =23,200 J/kg
Amount of energy Q =?
Using the formulae
Amount of energy ,Q =mc ( T2-T1)+ mLfusion
7.25kg x 128 J/(kg∙C°) x (328-18°C) + 7.25kg x 23200 J/kg
=455880J
=4.56 x 10^5 J
In elastic
collision, both the kinetic energy and momentum are conserved. Conservation
means that both the kinetic energy and momentum will have the same values
before and after elastic collision.
<span>As the
object A has low mass than object B. Hence upon collision, object B moves
forward, while object A will move backward. So option "C" is correct. </span>