Hello!
The independent variable is the variable deliberately changed.
The dependent variable is the variable that responds to change. So the answer is A.
Hope this helps. Any questions please just ask! Thank you!
Answer:
b ≈ 64 Kg/s
Explanation:
Given
Fd = −bv
m = 2.5 kg
y = 6.0 cm = 0.06 m
g = 9.81 m/s²
The object in the pan comes to rest in the minimum time without overshoot. this means that damping is critical (b² = 4*k*m).
m is given and we find k from the equilibrium extension of 6.0 cm (0.06 m):
∑Fy = 0 (↑)
k*y - W = 0 ⇒ k*y - m*g = 0 ⇒ k = m*g / y
⇒ k = (2.5 kg)*(9.81 m/s²) / (0.06 m)
⇒ k = 408.75 N/m
Hence, if
b² = 4*k*m ⇒ b = √(4*k*m) = 2*√(k*m)
⇒ b = 2*√(k*m) = 2*√(408.75 N/m*2.5 kg)
⇒ b = 63.9335 Kg/s ≈ 64 Kg/s
Answer:
0.69 ohm
Explanation:
Heat generated per second, H = 50 cal/s
Potential difference, V = 12 V
Let R is the resistance of coil.
The formula for the heat is given by


R = 0.69 ohm
Answer:
v = 1/3 m / s = 0.333 m / s
in the direction of the truck
Explanation:
The average speed is defined by the variation of the position between the time spent
v = Δx / Δt
since the position is a vector we must add using vectors, we will assume that the displacement to the right is positive, the total displacement is
Δx = 20 - 15 +20
Δx = 25 m
therefore we calculate
v = 25/75
v = 1/3 m / s = 0.333 m / s
in the direction of the truck
Answer:
There will be no change in the direction of the electric field .
Explanation:
The direction will remain the same because the sign of the charges has no effect on it.
When one replaces the conducting cube with one that has positive charge carriers there will be no change in the direction of the field as there is no defined relationship between the direction of the electric field and sign of the charge.