Answer:
the internal energy of the gas is 433089.52 J
Explanation:
let n be the number of moles, R be the gas constant and T be the temperature in Kelvins.
the internal energy of an ideal gas is given by:
Ein = 3/2×n×R×T
= 3/2×(5.3)×(8.31451)×(24 + 273)
= 433089.52 J
Therefore, the internal energy of this gas is 433089.52 J.
Answer: The Ampère -Max-well law
Explanation:
The Ampère -Max-well law relates magnetic flux and electric current. It determines the relationship between current in association with a magnetic field and also magnetic field in association to related current.
Either theory or evidence
Answer:
1. False 2) greater than. 3) less than 4) less than
Explanation:
1)
- As the collision is perfectly elastic, kinetic energy must be conserved.
- The expression for the final velocity of the mass m₁, for a perfectly elastic collision, is as follows:

- As it can be seen, as m₁ ≠ m₂, v₁f ≠ 0.
2)
- As total momentum must be conserved, we can see that as m₂ > m₁, from the equation above the final momentum of m₁ has an opposite sign to the initial one, so the momentum of m₂ must be greater than the initial momentum of m₁, to keep both sides of the equation balanced.
3)
- The maximum energy stored in the in the spring is given by the following expression:

- where A = maximum compression of the spring.
- This energy is always the sum of the elastic potential energy and the kinetic energy of the mass (in absence of friction).
- When the spring is in a relaxed state, the speed of the mass is maximum, so, its kinetic energy is maximum too.
- Just prior to compress the spring, this kinetic energy is the kinetic energy of m₂, immediately after the collision.
- As total kinetic energy must be conserved, the following condition must be met:
- So, it is clear that KE₂f < KE₁₀
- Therefore, the maximum energy stored in the spring is less than the initial energy in m₁.
4)
- As explained above, if total kinetic energy must be conserved:

- So as kinetic energy is always positive, KEf₂ < KE₁₀.
To solve this problem we will use the trigonometric concepts to find the distance h, which will allow us to find the speed of Jeff and that will finally be the variable that will indicate the total tension, since it is the variable of the centrifugal Force given in the vine at the lowest poing of the swing.
From the image:


When Jeff reaches his lowest point his potential energy is converted to kinetic energy





Tension in the string at the lowest point is sum of weight of Jeff and the his centripetal force




Therefore the tension in the vine at the lowest point of the swing is 842.49N