Answer:

Explanation:
Mass of the ship (m) = 6.9 × 10⁷ kg
Speed of the ship (v) = 33 km/h
First, let us convert the speed from km/h to m/s using the conversion factor.
We know that, 1 km/h = 5/18 m/s
So, 33 km/h = 
Now, we know, the momentum of an object only depends on its mass and speed. Momentum is independent of the length of the object.
So, here, length of the ship doesn't play any role in the determination of the momentum.
Magnitude of momentum of the ship = Mass × Speed
= 
= 
Therefore, the magnitude of ship's momentum is
.
Answer:
temperature on left side is 1.48 times the temperature on right
Explanation:
GIVEN DATA:

T1 = 525 K
T2 = 275 K
We know that


n and v remain same at both side. so we have

..............1
let final pressure is P and temp 

..................2
similarly
.............3
divide 2 equation by 3rd equation
![\frac{21}{11}^{-2/3} \frac{21}{11}^{5/3} = [\frac{T_1 {f}}{T_2 {f}}]^{5/3}](https://tex.z-dn.net/?f=%5Cfrac%7B21%7D%7B11%7D%5E%7B-2%2F3%7D%20%5Cfrac%7B21%7D%7B11%7D%5E%7B5%2F3%7D%20%3D%20%5B%5Cfrac%7BT_1%20%7Bf%7D%7D%7BT_2%20%7Bf%7D%7D%5D%5E%7B5%2F3%7D)

thus, temperature on left side is 1.48 times the temperature on right
Answer:
Please find the answer in the explanation
Explanation:
Given that A 1.0 g plastic bead, with a charge of -6.0 nC, is suspended between the two plates by the force of the electric field between them.
Since it is suspended, it must have been repelled by the bottom negative plate and trying to be attracted to the top plate.
We can therefore conclude that the upper plate, is positively charged
B.) The charge on the positive plate of parallel-plate capacitor is constructed of two horizontal 12.0-cm-diameter circular plates must be less than 6.0 nC
Answer:
a) V_a = -5.7536 10⁺⁷ V
, b) Vb = -1.92 10⁻⁷ V c) the sign of the potential change
Explanation:
The electrical potential for a point charge
V = k q / r
Where k is the Coulomb constant that you are worth 8.99 10⁹ N m² / C²
a) potential At point x = 0.250 cm = 0.250 10-2m
V_a = -8.99 10⁹ 1.6 10⁻¹⁹ /0.250 10⁻²
V_a = -5.7536 10⁺⁷ V
b) point x = 0.750 cm = 0.750 10-2
Vb = 8.99 10⁹ (-1.6 10⁻¹⁹) /0.750 10⁻²
Vb = -1.92 10⁻⁷ V
potemcial difference
ΔV = Vb- Va
V_ba = (-5.7536 + 1.92) 10⁻⁷
V_ba = -3.83 10⁻⁷ V
c) To know what would happen to a particle, let's use the relationship between the potential and the electric field
ΔV = E d
The force on the particle is
F = q₀ E
F = q₀ ΔV / d
We see that the force on the particle depends on the sign of the burden of proof. Now the burden of proof is negative to pass between the two points you have to reverse the sign of the potential, bone that the value should be reversed
V_ba = 0.83 10⁻⁷ V
Answer:
<em>The athlete will rise 1.10 meters off the ground</em>
Explanation:
<u>Vertical Motion</u>
If an object is launched vertically upwards at an initial speed vo, then it will reach a maximum height given by

The athlete can exert a net force upwards equal to twice his weight. It makes him accelerate upwards at

The speed at the end of his push can be computed by

Replacing the value of a obtained above:

where y is the length of this crouch


This is the initial speed of this vertical launch, thus

