Answer:twice of initial value
Explanation:
Given
spring compresses
distance for some initial speed
Suppose v is the initial speed and k be the spring constant
Applying conservation of energy
kinetic energy converted into spring Elastic potential energy

When speed doubles

divide 1 and 2


Therefore spring compresses twice the initial value
Answer:
Explanation:
For this problem we use the translational equilibrium condition. Our reference frame for block 1 is one axis parallel to the plane and the other perpendicular to the plane.
X axis
-Aₓ - f_e +T = 0 (1)
Y axis
N₁ - W_y = 0 ( 2)
let's use trigonometry for the weight components
sin θ = Wₓ / W
cos θ = W_y / W
Wₓ = W sin θ
W_y = W cos θ
We write the diagram for the second body.
Note that in the block the positive direction rd upwards, therefore for block 2 the positive direction must be downwards
W₂ -T = 0 (3)
we add the equations is 1 and 3
- W₁ sin θ - μ N₁ + W₂ = 0
from equation 2
N₁ = W₁ cos θ
we substitute
-W₁ sin θ - μ (W₁ cos θ) + W₂ = 0
W₂ = m₁ g (without ea - very expensive)
This is the smallest value that supports the equilibrium system
Effect of temperature.
"If the temperature of the substance is increased then the rate of chemical reaction is also increased because the kinetic energy is greater."
Effect of surface area.
"If the surface area is increased then the rate of reaction is increased because there will be more active sites for the reaction to occur.
We are missing an important piece of information needed to answer this question: the number of kcal Charles losses per day. However, we can come up with a general equation in which kcal/day is the only independent variable.
We know that it takes 3500 kcal to lose one pound. To lose 5 pounds, Charles needs to lose 5 x 3500 kcal = 17,500 kcal.
To find how many days it takes Charles to lose 17,500 kcal (5 pounds), we must divide that amount by the number of kcal Charles loses per day.
Here is the equation to calculate that number
Number of days= 17500 / (kcal per day)
If given calories, remember that 1000 calories = 1 kcal, and .001 kcal = 1 cal
Answer:
Explanation:
Since the roundabout is rotating with uniform velocity ,
input power = frictional power
frictional power = 2.5 kW
frictional torque x angular velocity = 2.5 kW
frictional torque x .47 = 2.5 kW
frictional torque = 2.5 / .47 kN .m
= 5.32 kN . m
= 5 kN.m
b )
When power is switched off , it will decelerate because of frictional torque .