answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nikitadnepr [17]
1 year ago
6

The mass m1 enters from the left with velocity v0 and strikes a mass m2 > m1 which is initially at rest. The collision betwee

n the blocks is perfectly elastic. The mass m2 then compresses the spring an amount x.
True, False, greater than, equal to, less than :

1. Immediately after colliding with m2, the mass m1 stops and has zero velocity.
2. Immediately after the collision, the momentum of m2 is ....... the initial momentum of m1.
3. The maximum energy stored in the spring is ...... the initial energy of m1.
4. Immediately after the collision, the energy of m2 is ...... the initial energy of m1.
Physics
1 answer:
enot [183]1 year ago
4 0

Answer:

1. False 2) greater than. 3) less than 4) less than

Explanation:

1)

  • As the collision is perfectly elastic, kinetic energy must be conserved.
  • The expression for the final velocity of the mass m₁, for a perfectly elastic collision, is as follows:

        v_{1f} = v_{10} *\frac{m_{1} -m_{2} }{m_{1} +m_{2}}

  • As it can be seen, as m₁ ≠ m₂, v₁f ≠ 0.

2)

  • As total momentum must be conserved, we can see that as m₂ > m₁, from the equation above the final momentum of m₁ has an opposite sign to the initial one, so the momentum of m₂ must be greater than the initial momentum of m₁, to keep both sides of the equation balanced.

3)    

  • The maximum energy stored in the in the spring is given by the following expression:

       U =\frac{1}{2} *k * A^{2}

  • where A = maximum compression of the spring.
  • This energy is always the sum of the elastic potential energy and the kinetic energy of the mass (in absence of friction).
  • When the spring is in a relaxed state, the speed of the mass is maximum, so, its kinetic energy is maximum too.
  • Just prior to compress the spring, this kinetic energy is the kinetic energy of m₂, immediately after the collision.
  • As total kinetic energy must be conserved, the following condition must be met:

       KE_{10} = KE_{1f}  + KE_{2f}

  • So, it is clear that KE₂f  < KE₁₀
  • Therefore, the maximum energy stored in the spring is less than the initial energy in m₁.

4)

  • As explained above, if total kinetic energy must be conserved:

        KE_{10} = KE_{1f}  + KE_{2f}

  • So as kinetic energy is always positive, KEf₂ < KE₁₀.
You might be interested in
Paul and Ivan are riding a tandem bike together. They’re moving at a speed of 5 meters/second. Paul and Ivan each have a mass of
Sonbull [250]
The formula is Ke = 1/2 m v^2
The two of them together have a Ke of mv^2. So you either increase m or v. That's what makes the problem difficult. He can do D or B. We have to choose.

A is no solution. The Ke goes down because Paul loses Ivan's mass.
C is out of the question 3 meters/sec is a big reduction from 5 m/s. So now what do we do about B and D?

The question is what does the third person add. The tandoms I've peddled only allow for 1 or 2 people to add to the motion. So the third person only adds mass. He does not have a v that he is contributing to. To say that he is going 5m/s is true, but he's not contributing anything to that motion.

I pick B, but it is one of those questions that the correctness of it is in the head of the proposer. Be prepared to get it wrong. Argue the point politely if you agree with me, but back off as soon as you have presented your case.

B <<<<====== answer. 
5 0
2 years ago
Read 2 more answers
How do air mass conditions ahead of the squall line support the development of new cell?
IRISSAK [1]
<span>Storm cells in a squall line typically move from the southwest to the northeast, and as the mature cells in the northeast begin to die off, new ones are formed at the opposite end to advance the line. The air in the southwest corner has strong vertical updrafts that allow new cells to grow and develop into thunderstorms.</span>
7 0
2 years ago
Betelgeuse is the bright red star representing the left shoulder of the constellation Orion. All the following statements about
Sav [38]

Answer:

Option A; ITS SURFACE IS COOLER THAN THE SURFACE OF THE SUN.

Explanation:

A red supergiant star is a larger and brighter type of red giant star. Red supergiants are often variable stars and are between 200 to 2,000 times bigger than the Sun. Example is Betelgeuse.

Betelgeuse is one of the largest known stars, it has a diameter of about 700 times the size of the Sun or 600 million miles, it emits almost 7,500 times as much energy as the Sun, it has a rather low surface temperature (6000F compared to the Sun's 10,000F); this means that it has a more cooler surface than the Sun's surface.

This low temperature also means that the star will appear orange-red in color, and the combination of size and temperature makes it a kind of star called a red super giant.

Although, all the statements above are correct, the only one that can be inferred from the red color of Betelgeuse is that ITS SURFACE IS COOLER THAN THE SURFACE OF THE SUN.

3 0
2 years ago
A wood pipe having an inner diameter of 3 ft. is bound together using steel hoops having a cross sectional area of 0.2 in.2 The
WINSTONCH [101]

Answer:

31.67 in

Explanation:

Given:

Diameter of the pipe, D = 3ft = 36 in

cross-sectional area of the steel = 0.2 in²

Note: Refer to the figure attached

From the free body diagram represented in the figure, we have

ΣFx = 0

or

pressure × projected area = 2 × Force in steel

Now, the projected area = spacing (s) × diameter of the wood pipe

force in steel = stress in steel (σ) × cross-sectional area of the steel

on substituting the values we get

4 ksi × (s × 36 in) = 2 × σ × 0.2 in²

also, allowable hoop stress = 11.4 ksi

thus,

σ = 11.4 ksi = 11.4 × 10³ psi

therefore, we have

4 psi × (s × 36 in) = 2 × 11.4 × 10³ psi × 0.2 in²

thus,

s = 31.67 in

hence the maximum spacing is 31.67 in

3 0
2 years ago
A 0.200-kg mass attached to the end of a spring causes it to stretch 5.0 cm. If another 0.200-kg mass is added to the spring, th
ziro4ka [17]

Answer:

A: 4 times as much

B: 200 N/m

C: 5000 N

D: 84,8 J

Explanation:

A.

In the first question, we have to caculate the constant of the spring with this equation:

m*g=k*x

Getting the k:

k=\frac{m*g}{x} =\frac{0,2[kg]*9,81[\frac{m}{s^{2} } ]}{0,05[m]} =39,24[\frac{N}{m}]

Then we can calculate how much the spring stretch whith the another mass of 0,2kg:

x=\frac{m*g}{k} =\frac{0,4[kg]*9,81[\frac{m}{s^{2} } ]}{39,24[\frac{N}{m}]} =0,1[m]\\

The energy of a spring:

E=\frac{1}{2}*k*x^{2}

For the first case:

E=\frac{1}{2} *39,24[\frac{N}{m}]*(0,05[m])^{2} =0,049 [J]

For the second case:

E=\frac{1}{2} *39,24[\frac{N}{m}]*(0,1[m])^{2} =0,0196 [J]

If you take the relation E2/E1 = 4.

B.

We have the next facts:

x=0,005 m

E = 0,0025 J

Using the energy equation for a spring:

E=\frac{1}{2}*k*x^{2}⇒k=\frac{E*2}{x^{2} } =\frac{0,0025[J]*2}{(0,005[m])^{2} } =200[\frac{N}{m} ]

C.

The potential energy of the diver will be equal to the kinetic energy in the moment befover hitting the watter.

E=W*h=500[N]*10[m]=5000[J]

Watch out the units in this case, the 500 N reffer to the weighs of the diver almost relative to the earth, thats equal to m*g.

D.

The work is equal to the force acting in the direction of the motion. so we have to do the diference beetwen angles to obtain the effective angle where the force is acting: 47-15=32 degree.

The force acting in the direction of the ramp will be the projection of the force in the ramp, equal to F*cos(32). The work will be:

W=F*d=F*cos(32)*d=10N*cos(32)*10m=84,8J

7 0
1 year ago
Other questions:
  • the grid in a triode is kept negatively charged to prevent… a. the variations in voltage from getting too large. b. electrons be
    7·2 answers
  • A sailboat starts from rest and accelerates at a rate of 0.21 m/s^2 over a distance of 280 m. find the magnitude of the boat's f
    6·1 answer
  • Michael Phelps needs to swim at an average speed of 2.00 m/s in order to set a new world record in the 200 m freestyle. If he sw
    8·1 answer
  • A rope is attached to a block. The rope pulls on the block with a force of 240 N, at an angle of 40 degrees to the horizontal (t
    10·2 answers
  • Rod AB is held in place by the cord AC. Knowing that the tension in the cord is 1350 N and that c 5 360 mm, determine the moment
    11·1 answer
  • Each plate of a parallel-plate capacator is a square with side length r, and the plates are separated by a distance d. The capac
    13·1 answer
  • calculate the time rate of change in air density during expiration. Assume that the lung has a total volume of 6000mL, the diame
    10·2 answers
  • 5. Measure: With the lights on, click Pause. Turn on Show rulers. A. The wavelength of a longitudinal wave is equal to the dista
    9·1 answer
  • Which option is part of designing a set of experimental procedures?
    11·1 answer
  • A roller coaster accelerates from initial velocity of 6.0 m/s to a final velocity of 70 m/s over 4 seconds . what is the acceler
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!