If we let
p as the directed multigraph that has no isolated vertices and has an Euler circuit
q as the graph that is weakly connected with the in-degree and out-degree of each vertex equal
The statement we have to prove is
p ←→q (for biconditional)
Since
p → q (assuming that p is strongly connected to q)
q ← p (since p is strongly connected to q)
Therefore, the bicondition is satisfied
Answer:
Ratio of length will be 
Explanation:
We have given time period of the pendulum when length is
is 
And when length is
time period 
We know that time period is given by

So
----eqn 1
And
-------eqn 2
Dividing eqn 2 by eqn 1

Squaring both side

Answer:

(we need the mass of the astronaut A)
Explanation:
We can solve this by using the conservation law of the linear momentum P. First we need to represent every mass as a particle. Also we can simplify this system of particles by considering only the astronaut A with an initial speed
of 0 m/s and a mass
and the IMAX camera with an initial speed
of 7.5 m/s and a mass
of 15.0 kg.
The law of conservation says that the linear momentum P (the sum of the products between all masses and its speeds) is constant in time. The equation for this is:

By the law of conservation we know that
For
(final linear momentum) we need to treat the collision as a plastic one (the two particles stick together after the encounter).
So:

