answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vlada-n [284]
2 years ago
8

Michael Phelps needs to swim at an average speed of 2.00 m/s in order to set a new world record in the 200 m freestyle. If he sw

ims the first 100 meters at an average speed of 1.80 m/s how fast must he swim the second 100 meters in order to break the record?
Physics
1 answer:
Natasha_Volkova [10]2 years ago
3 0

Answer:

Explanation:

Given

average speed of Phelps v_{avg}=2\ m/s

total distance d=200\ m

he swims first 100 m at an average speed if 1.8 m/s

so time taken is t_1=\frac{100}{1.8}=55.55\ s

suppose t_2 is the time taken to swim remaining half

average velocity is v_{avg}=\frac{displacement}{total\ time}

v_{avg}=\frac{100+100}{55.55+t_2}

t_2+55.55=\frac{200}{2}=100

t_2=44.45\ s

so velocity in the second half is

v_2=\frac{100}{45.45}

v_2=2.19\approx 2.2\ m/s                                      

You might be interested in
5. Measure: With the lights on, click Pause. Turn on Show rulers. A. The wavelength of a longitudinal wave is equal to the dista
Marysya12 [62]

Explanation:

A) The distance between the two successive compressions (or rarefactions) is actually called the wavelength of the longitudinal waves.

B) Wavelengths of longitudinal and transverse waves are comparable in the fact that in a transverse wave, the particles move perpendicular to the direction the wave travels whereas in a longitudinal wave the particles are displaced along the direction to the direction the wave travels

6 0
2 years ago
Two children stand on a platform at the top of a curving slide next to a backyard swimming pool. At the same moment the smaller
victus00 [196]

1.

Answer:

a) It is less

Explanation:

By energy conservation we can say that initial potential energy of both child must be equal to the final kinetic energy of the two child.

Since initially they are at same height so we will say that initial potential energy will be given as

mgH and MgH

so the child with greater mass has more energy and hence smaller child will reach with smaller kinetic energy

2.

Answer:

b. The two speeds are equal.

Explanation:

As we know by mechanical energy conservation law we have

mgh = \frac{1}{2}mv^2

v = \sqrt{2gh}

since both child starts at same height so here they both will reach the bottom at same speed

3.

Answer:

c. The two accelerations are equal

Explanation:

Since we know that average acceleration of the motion is given as

a = \frac{v_f - v_i}{\Delta t}

since here initial and final speeds are same so they both must have same average acceleration here.

5 0
2 years ago
A hot (70°C) lump of metal has a mass of 250 g and a specific heat of 0.25 cal/g⋅°C. John drops the metal into a 500-g calorimet
Gnom [1K]

Answer:

d. 37 °C

Explanation:

m_{m} = mass of lump of metal = 250 g

c_{m} = specific heat of lump of metal  = 0.25 cal/g°C

T_{mi} = Initial temperature of lump of metal = 70 °C

m_{w} = mass of water = 75 g

c_{w} = specific heat of water = 1 cal/g°C

T_{wi} = Initial temperature of water = 20 °C

m_{c} = mass of calorimeter  = 500 g

c_{c} = specific heat of calorimeter = 0.10 cal/g°C

T_{ci} = Initial temperature of calorimeter = 20 °C

T_{f} = Final equilibrium temperature

Using conservation of heat

Heat lost by lump of metal = heat gained by water + heat gained by calorimeter

m_{m} c_{m} (T_{mi} - T_{f}) = m_{w} c_{w} (T_{f} - T_{wi}) +  m_{c} c_{c} (T_{f} - T_{ci}) \\(250) (0.25) (70 - T_{f} ) = (75) (1) (T_{f} - 20) + (500) (0.10) (T_{f} - 20)\\T_{f} = 37 C

6 0
2 years ago
A small block of wood of inertia mb is released from rest a distance h above the ground, directly above your head. you decide to
Zinaida [17]

Since I'm assuming that its perfectly elastic, considering there's not enough information given, so I think that no energy is dissipated in the collision


hmax = h - d + { [ mpvp - mb√(2gd) ] / (mp+mb) }² / (2g)

7 0
1 year ago
Assume that a cloud consists of tiny water droplets suspended (uniformly distributed,
aev [14]
9.8 ms^-2 is acceleration
4 0
2 years ago
Other questions:
  • A 145-g baseball is thrown so that it acquires a speed of 25 m/s. What was the net work done on the ball to make it reach this s
    10·1 answer
  • n Section 12.3 it was mentioned that temperatures are often measured with electrical resistance thermometers made of platinum wi
    14·1 answer
  • A toy rocket launcher can project a toy rocket at a speed as high as 35.0 m/s.
    6·1 answer
  • A rocket exhausts fuel with a velocity of 1500m/s, relative to the rocket. It starts from rest in outer space with fuel comprisi
    15·2 answers
  • The ultimate source of energy that powers the Sun is__________.
    15·2 answers
  • If a steady-state heat transfer rate of 3 kW is conducted through a section of insulating material 1.0 m2 in cross section and 2
    15·1 answer
  • There are lots of examples of ideal gases in the universe, and they exist in many different conditions. In this problem we will
    8·1 answer
  • "For a first order instrument with a sensitivity of .4 mV/K and a time" constant of 25 ms, find the instrument’s response as a f
    9·1 answer
  • A quarterback passes a football from height h = 2.1 m above the field, with initial velocity v0 = 13.5 m/s at an angle θ = 32° a
    9·1 answer
  • You may have noticed runaway truck lanes while driving in the mountains. These gravel-filled lanes are designed to stop trucks t
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!