Answer:
I1 = 0.772 A
Explanation:
<u>Given</u>: R1 = 5.0 ohm, R2 = 9.0 ohm, R3 = 4.0 ohm, V = 6.0 Volts
<u>To find</u>: current I = ? A
<u>Solution: </u>
Ohm's law V= I R
⇒ I = V / R
In order to find R (total) we first find R (p) fro parallel combination. so
1 / R (p) = 1 / R1 + 1/ R2 ∴(P) stand for parallel
R (p) = R1R2 / ( R1 + R2)
R (p) = (5.0 × 9.0) / (5.0 + 9.0)
R (p) = 3.214 ohm
Now R (total) = R (p) + R3 (as R3 is connected in series)
R (total) = 3.214 ohm + 4.0 Ohm
R (total) = 7.214 ohm
now I (total) = 7.214 ohm / 6.0 Volts
I (total) = 1.202 A
This the total current supplied by 6 volts battery.
as voltage drop across R (p) = V = R (p) × I (total)
V (p) = 3.214 ohm × 1.202 A = 3.864 volts
Now current through 5 ohms resister is I1 = V (P) / R1
I1 = 3.864 volts / 5 ohm
I1 = 0.772 A
Answer: deceleration of 
Explanation:
Given
Car is traveling at a speed of u=20 m/s
The diameter of the car is d=70 cm
It slows down to rest in 300 m
If the car rolls without slipping, then it must be experiencing pure rolling i.e. 
Using the equation of motion

Insert 

Write acceleration as 

So, the car must be experiencing the deceleration of
.
Answer:

Explanation:
Given that
Length= 2L
Linear charge density=λ
Distance= d
K=1/(4πε)
The electric field at point P



So

Now by integrating above equation

Answer:
3100 m/s
Explanation:
The relationship between frequency and wavelength of a wave is given by the wave equation:

where
v is the speed of the wave
f is its frequency
is the wavelength
For the wave in this problem,
f = 15,500 Hz

Therefore, the wave speed is
