Answer:
The amount of work that must be done to compress the gas 11 times less than its initial pressure is 909.091 J
Explanation:
The given variables are
Work done = 550 J
Volume change = V₂ - V₁ = -0.5V₁
Thus the product of pressure and volume change = work done by gas, thus
P × -0.5V₁ = 500 J
Hence -PV₁ = 1000 J
also P₁/V₁ = P₂/V₂ but V₂ = 0.5V₁ Therefore P₁/V₁ = P₂/0.5V₁ or P₁ = 2P₂
Also to compress the gas by a factor of 11 we have
P (V₂ - V₁) = P×(V₁/11 -V₁) = P(11V₁ - V₁)/11 = P×-10V₁/11 = -PV₁×10/11 = 1000 J ×10/11 = 909.091 J of work
Answer:
varn=n1+1ehvkT–1
Explanation:
This is Einstein's equation.
Answer: X
Explanation:
This situation can be illustrated as a car in circular motion (image attached).
In circular motion the acceleration vector
is always directed toward the center of the circumference (that's why it's called centripetal acceleration).
So, in this case the arrow labeled X is the only that points toward the center, hence it represents the car's centripetal acceleration
Answer:
Acceleration generate by punk = 3 m/s²
Explanation:
Given:
Weight of punk = 100 Kg
Force applied on punk = 300 N
Find:
Acceleration generate by punk = ?
Computation:
Acceleration = Force / Mass
Acceleration generate by punk = Force applied on punk / Weight of punk
Acceleration generate by punk = 300 N / 100 Kg
Acceleration generate by punk = 3 m/s²
Answer:
Decreasing the distance between Hox and Blox, increasing the mass of Hox, or increasing the mass of Hox and Blox.
Explanation:
The gravity force is directly proportional to the mass of the bodies and inversely proportional to the square of the distance that separates them.
Or
If we decrease the distance between both planets (Hox and Blox), the gravitational pull between them will increase.
On the other hand, if we keep the distance between Hox and Blox, but we increase the mass of one of them, or increase the mass of both, the gravitational pull between them will also increase.