Prior to touching the bar magnet, the magnetic domains in the nail were pointing in random directions. When Taylor touched the nail to the bar magnet the magnetic fields of the magnetic domains aligned and it became a temporary magnet.
Explanation:
It is given that,
Magnetic field, B = 0.1 T
Acceleration, 
Charge on electron,
Mass of electron,
(a) The force acting on the electron when it is accelerated is, F = ma
The force acting on the electron when it is in magnetic field, 
Here, 
So, 
Where
v is the velocity of the electron
B is the magnetic field


v = 341250 m/s
or

So, the speed of the electron is 
(b) In 1 ns, the speed of the electron remains the same as the force is perpendicular to the cross product of velocity and the magnetic field.
To solve this problem it is necessary to apply the concepts related to the heat flux rate expressed in energetic terms. The rate of heat flow is the amount of heat that is transferred per unit of time in some material. Mathematically it can be expressed as:

Where
k = 0.84 J/s⋅m⋅°C (The thermal conductivity of the material)
Area
Length
= Temperature of the "hot"reservoir
= Temperature of the "cold"reservoir
Replacing with our values we have that,



Therefore the correct answer is B.
Answer:
I = 16 kg*m²
Explanation:
Newton's second law for rotation
τ = I * α Formula (1)
where:
τ : It is the moment applied to the body. (Nxm)
I : it is the moment of inertia of the body with respect to the axis of rotation (kg*m²)
α : It is angular acceleration. (rad/s²)
Kinematics of the wheel
Equation of circular motion uniformly accelerated :
ωf = ω₀+ α*t Formula (2)
Where:
α : Angular acceleration (rad/s²)
ω₀ : Initial angular speed ( rad/s)
ωf : Final angular speed ( rad
t : time interval (rad)
Data
ω₀ = 0
ωf = 1.2 rad/s
t = 2 s
Angular acceleration of the wheel
We replace data in the formula (2):
ωf = ω₀+ α*t
1.2= 0+ α*(2)
α*(2) = 1.2
α = 1.2 / 2
α = 0.6 rad/s²
Magnitude of the net torque (τ )
τ = F *R
Where:
F = tangential force (N)
R = radio (m)
τ = 80 N *0.12 m
τ = 9.6 N *m
Rotational inertia of the wheel
We replace data in the formula (1):
τ = I * α
9.6 = I *(0.6
)
I = 9.6 / (0.6
)
I = 16 kg*m²
<span>an object that appears black absorbs al color. an object that appears white reflects all colors.</span>