answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mrs_skeptik [129]
2 years ago
6

An engineer wants to design a circular racetrack of radius R such that cars of mass m can go around the track at speed without t

he aid of friction or other forces other than the perpendicular contact force from the track surface Find an expression for the required banking angle 0 of the 0 = track, measured from the horizontal. Express the answer in terms of m, R, , and g Suppose the race cars actually round the track at a speed F w > v. What additional radial force F, is required to keep the cars on the track at this speed? Express the answer in terms of m, R, U, w, and g.
Physics
1 answer:
gtnhenbr [62]2 years ago
4 0

1. tan \theta = \frac{v^2}{Rg}

For the first part, we just need to write the equation of the forces along two perpendicular directions.

We have actually only two forces acting on the car, if we want it to go around the track without friction:

- The weight of the car, mg, downward

- The normal reaction of the track on the car, N, which is perpendicular to the track itself (see free-body diagram attached)

By resolving the normal reaction along the horizontal and vertical direction, we find the following equations:

N cos \theta = mg (1)

N sin \theta = m \frac{v^2}{R} (2)

where in the second equation, the term m\frac{v^2}{R} represents the centripetal force, with v being the speed of the car and R the radius of the track.

Dividing eq.(2) by eq.(1), we get the  following expression:

tan \theta = \frac{v^2}{Rg}

2. F=\frac{m}{R}(w^2-v^2)

In this second situation, the cars moves around the track at a speed

w>v

This means that the centripetal force term

m\frac{v^2}{R}

is now larger than before, and therefore, the horizontal component of the normal reaction, N sin \theta, is no longer enough to keep the car in circular motion.

This means, therefore, that an additional radial force F is required to keep the car round the track in circular motion, and therefore the equation becomes

N sin \theta + F = m\frac{w^2}{R}

And re-arranging for F,

F=m\frac{w^2}{R}-N sin \theta (3)

But from eq.(2) in the previous part we know that

N sin \theta = m \frac{v^2}{R}

So, susbtituting into eq.(3),

F=m\frac{w^2}{R}-m\frac{v^2}{R}=\frac{m}{R}(w^2-v^2)

You might be interested in
A student bikes to school by traveling first dN = 1.00 miles north, then dW = 0.600 miles west, and finally dS = 0.200 miles sou
kompoz [17]
Refer to the diagram shown below.

Define unit vectors along the x and y axes as respectively \hat{i} \, and \, \hat{j}.

Then the three successive displacements, written in component form, are respectively
\vec{dN} = 1.0 \, \hat{j} \\
\vec{dW} = -0.6 \, \hat{i} \\  \vec{dS} = -0.2 \, \hat{j}

The total displacement for the first leg of the trip is
\vec{d} = \vec{dN} + \vec{dW} + \vec{dS} \\ \vec{d}= 1.0\hat{j}-0.6\hat{i}-0.2\hat{j} \\ \vec{d}=-0.6\hat{i}+0.8\hat{j}

Answer:
\vec{d} = -0.6\hat{i}+0.8\hat{j}   or  (-0.6, 0.8)


6 0
2 years ago
A4 40 kg girl skates at 3.5 m/s one ice toward her 65 kg friend who is standing still, with open arms. As they collide and hold
salantis [7]

Explanation:

Below is an attachment containing the solution.

8 0
2 years ago
In preparation for a demonstration, your professor brings a 1.50−L bottle of sulfur dioxide into the lecture hall before class t
mina [271]

Answer:

n = 2.06 moles

Explanation:

The absolute pressure at depth of 27 inches can be calculated by:

Pressure = Pressure read + Zero Gauge pressure

Zero Gauge pressure = 14.7 psi

Pressure read = 480 psi

Total pressure = 480 psi + 14.7 psi = 494.7 psi

P (psi) = 1/14.696  P(atm)

So, Pressure = 33.66 atm

Temperature = 25°C

The conversion of T( °C) to T(K) is shown below:

T(K) = T( °C) + 273.15  

So,  

T = (25 + 273.15) K = 298.15 K  

T = 298.15 K  

Volume = 1.50 L

Using ideal gas equation as:

PV=nRT

where,  

P is the pressure

V is the volume

n is the number of moles

T is the temperature  

R is Gas constant having value = 0.0821 L.atm/K.mol

Applying the equation as:

33.66 atm × 1.50 L = n × 0.0821 L.atm/K.mol × 298.15 K  

⇒n = 2.06 moles

7 0
2 years ago
Combine Newton's 2nd law and Hooke's law for a spring to find the acceleration of the block a(t) as a function of time. Express
Inga [223]

Answer:

a=-\dfrac{k}{m}x(t)

Explanation:

From Newton's second law,

F = ma

where F is the force, m is the mass and a is the acceleration.

From Hooke's law,

F = -kx(t)

where k is the spring constant and x(t) is the displacement function measured from the origin. The negative sign indicates the force acts in opposite direction to the displacement. In fact, it is a restoring force; it acts to return the spring to its original undisturbed position.

Since both forces are the same,

F = ma= - kx(t)

a=-\dfrac{k}{m}x(t)

The implication of this is that the acceleration is proportional to the displacement but opposite to it. That last statement is the definition of a simple harmonic motion which this is.

The ratio \dfrac{k}{m} is a constant except in situations where the mass is varying (say, the mass on the spring is a decaying material).

4 0
2 years ago
The different in size of each of the rope's pullers, correspond to a difference in the magnitude of the applied force, such that
olga55 [171]

Answer:

F = - 50 N

Hence, the magnitude of resultant force is 50 N and its direction is leftwards.

Explanation:

The magnitude of the resultant force is always equal to the sum of all forces. While, the direction of resultant force will be equal to the direction of the force with greater magnitude:

Resultant\ Force = F = F_{1} - F_{2}

considering right direction to be positive:

F₁ = Force applied on right rope = 150 N

F₂ = Force applied on left rope = 200 N

Therefore, the resultant force can be found by using these values in equation:

F = 150\ N - 200\ N

<u>F = - 50 N</u>

<u>Hence, the magnitude of resultant force is 50 N and its direction is leftwards.</u>

5 0
2 years ago
Other questions:
  • A double slit apparatus is held 1.2 m from a screen. [___/4] (a) When red light (λ = 600 nm) is sent through the double slit, th
    13·1 answer
  • As Aubrey watches this merry-go-round for a total of 2 minutes, she notices the black horse pass by 15 times. What is the period
    12·2 answers
  • A body A of mass 1.5kg, travelling along the positive x-axis with speed 4.5m/s, collides with another body B of mass 3.2kg which
    14·1 answer
  • The deepest point of the pacific ocean is 11,033 m, in the mariana trench. what is the gauge pressure in the water at that point
    6·1 answer
  • A bucket of mass m is hanging from the free end of a rope whose other end is wrapped around a drum (radius R, mass M) that can r
    8·1 answer
  • A ledge on a building is 18 m above the ground. A taut rope attached to a 4.0-kg can of paint sitting on the ledge passes up ove
    15·1 answer
  • A force pair is produced when a tennis racket strikes a tennis ball. Which of the following best explains why the tennis ball do
    8·1 answer
  • What is the magnitude of the force needed to hold the outer 2 cm of the blade to the inner portion of the blade?
    14·1 answer
  • The wad of clay of mass m = 0.36 kg is initially moving with a horizontal velocity v1 = 6.0 m/s when it strikes and sticks to th
    7·1 answer
  • 2) A man squeezes a pin between his thumb and finger, as shown in Fig. 6.1.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!