Answer:
When she adds more washers to the meter, the magnitude of force that is shown on the force meter increases.
Explanation:
The force that the washers exert on the force meter is actually the weight of the washers. Weight is actually a force with gravitation acceleration.
F = W = mg
Where g is gravitational acceleration and its value is 9.81 m/s² and m is the mass of any object. As she adds more washers to the meter so the total mass of the washers increases. As the mass of the washers increases, magnitude of the force (Weight) shown on the force meter increases.
Answer:
-13.18°C
Explanation:
To develop the problem it is necessary to consider the concepts related to the thermal conduction rate.
Its definition is given by the function

Where,
Q = The amount of heat transferred
t = time
k = Thermal conductivity constant
A = Cross-sectional area
The difference in temperature between one side of the material and the other
d= thickness of the material
The problem says that there is a loss of heat twice that of the initial state, that is

Replacing,




Solvinf for
,

Therefore the temprature at the outside windows furface when the heat lost per second doubles is -13.18°C
<span>A decrease in the overall volume of gases namely hydrogen would prevent nuclear fusion in a nebula.</span>
Based on the direction of propagation compared to direction of vibration, waves are classified into:
1- Transverse waves: The direction of propagation of the wave is perpendicular to the direction of vibration of the medium particles.
2- Longitudinal waves: The direction of propagation of the wave is the same as the direction of vibration of the medium particles.
For the question we have here, since the direction of the wave is the same as the direction of vibration of particles, therefore, this wave is a longitudinal wave
R= (rou * L) / area
where R is the wire resistance
rou: resistivity of the wire material
L : wire length
A : cross section area of wire
by sub.
0.757= (rou*25)/ 3.5*10^-6
25*rou = 2.6495*10^-6
rou= 1.0598*10^-7 ohm.m