answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wewaii [24]
2 years ago
6

A beam of electrons is sent horizontally down the axis of a tube to strike a fluorescent screen at the end of the tube. On the w

ay, the electrons encounter a magnetic field directed vertically downward. The spot on the screen will therefore be deflected: 1. not at all 2. upward 3. to the right as seen from the electron source 4. to the left as seen from the electron source 5. downward
Physics
1 answer:
slamgirl [31]2 years ago
4 0

Answer:

The answer is 3.

Explanation:

The answer to this question can be found by applying the right hand rule for which the pointer finger is in the direction of the electron movement, the thumb is pointing in the direction of the magnetic field, so the effect that this will have on the electrons is the direction that the middle finger points in which is right in this example.

So as a result of the magnetic field directed vertically downwards which is at a right angle with the electron beams, the electrons will move to the right and the spot will be deflected to the right of the screen when looking from the electron source.

I hope this answer helps.

You might be interested in
Explain why the coin is able to float on top of the water in this glass
makkiz [27]

Explanation:

Becuse the coin has a <em><u>Lesser</u></em><em><u> </u></em><em><u>Density</u></em> than water.

3 0
1 year ago
Read 2 more answers
A rubber ball with a mass 0.20 kg is dropped vertically from a height of 1.5 m above the floor. The ball bounces off of the floo
Digiron [165]
Potential Energy = mass * Hight * acceleration of gravity
PE=hmg
PE = 1.5 * .2 * 9.81
PE = 2.943
it lost .6 so 2.943 - .6 = 2.343
now your new energy is 2.343 so solve for height
2.343 = mhg
2.334 = .2 * h * 9.81
h = 1.194
the ball after the bounce only went up 1.194m
8 0
1 year ago
Why are fossil fuels considered nonrenewable resources if they are still forming beneath the surface today?
AleksandrR [38]

B is the answer because it takes millions of years to form these fossil fuels and everyday we use way more than we can find we may have a surplus for now but we may run out sooner than some think

7 0
2 years ago
A solid sphere is released from the top of a ramp that is at a height h1 = 2.30 m. It rolls down the ramp without slipping. The
Oksi-84 [34.3K]

Answer:

The horizontal distance d does the ball travel before landing is 1.72 m.

Explanation:

Given that,

Height of ramp h_{1}=2.30\ m

Height of bottom of ramp h_{2}=1.69\ m

Diameter = 0.17 m

Suppose we need to calculate the horizontal distance d does the ball travel before landing?

We need to calculate the time

Using equation of motion

h_{2}=ut+\dfrac{1}{2}gt^2

t=\sqrt{\dfrac{2h_{2}}{g}}

t=\sqrt{\dfrac{2\times1.69}{9.8}}

t=0.587\ sec

We need to calculate the velocity of the ball

Using formula of kinetic energy

K.E=\dfrac{1}{2}mv^2+\dfrac{1}{2}I\omega^2

K.E=\dfrac{1}{2}mv^2+\dfrac{1}{2}\times(\dfrac{2}{5}mr^2)\times(\dfrac{v}{r})^2

K.E=\dfrac{7}{10}mv^2

Using conservation of energy

K.E=mg(h_{1}-h_{2})

\dfrac{7}{10}mv^2=mg(h_{1}-h_{2})

v^2=\dfrac{10}{7}\times g(h_{1}-h_{2})

Put the value into the formula

v=\sqrt{\dfrac{10\times9.8\times(2.30-1.69)}{7}}

v=2.922\ m/s

We need to calculate the horizontal distance d does the ball travel before landing

Using formula of distance

d =vt

Where. d = distance

t = time

v = velocity

Put the value into the formula

d=2.922\times 0.587

d=1.72\ m

Hence, The horizontal distance d does the ball travel before landing is 1.72 m.

8 0
2 years ago
The food calorie, equal to 4186J , is a measure of how much energy is released when food is metabolized by the body. A certain b
vovangra [49]
<h2>The hiker will go up to 850 m on the hill</h2>

Explanation:

The total energy gained  by the hiker = 140 x 4186 J

This energy is consumed in the potential energy acquired , while climbing up the hill.

The potential energy P.E = mass of hiker x acceleration due to gravity x height

Thus

140 x 4186 = 69 x 10 x h

or h = \frac{4186x140}{69x10}  = 850 m

If the 20% of the total energy is used

the height h₀ = \frac{0.2x4186x140}{69x10} = 170 m

5 0
2 years ago
Other questions:
  • The homeowner installs an electrically heated mirror into the shower room.When a person has a shower, the heated mirrors does no
    14·2 answers
  • What is the period of a wave if the wavelength is 100 m and the speed is 200 m/s?
    9·2 answers
  • A body A of mass 1.5kg, travelling along the positive x-axis with speed 4.5m/s, collides with another body B of mass 3.2kg which
    14·1 answer
  • What is the Physics Primer?
    15·2 answers
  • At a local swimming pool, the diving board is elevated h = 5.5 m above the pool's surface and overhangs the pool edge by L = 2 m
    12·1 answer
  • A nonuniform, horizontal bar of mass m is supported by two massless wires against gravity. The left wire makes an angle ϕ1 with
    13·1 answer
  • A 5-kg can of paint is sitting on top of a 2-meter high step ladder. How much work did you do to move the can of paint to the to
    10·1 answer
  • The spring is now compressed so that the unconstrained end moves from x=0 to x=L. Using the work integral W=∫xfxiF⃗ (x⃗ )⋅dx⃗ ,
    6·1 answer
  • A disk of known radius and rotational inertia can rotate without friction in a horizontal plane around its fixed central axis. T
    7·1 answer
  • Find the truth table for the circuit shown. Explain the working principle for all the inputs, briefly. Explain why D1 is used in
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!