Explanation:
Becuse the coin has a <em><u>Lesser</u></em><em><u> </u></em><em><u>Density</u></em> than water.
Potential Energy = mass * Hight * acceleration of gravity
PE=hmg
PE = 1.5 * .2 * 9.81
PE = 2.943
it lost .6 so 2.943 - .6 = 2.343
now your new energy is 2.343 so solve for height
2.343 = mhg
2.334 = .2 * h * 9.81
h = 1.194
the ball after the bounce only went up 1.194m
B is the answer because it takes millions of years to form these fossil fuels and everyday we use way more than we can find we may have a surplus for now but we may run out sooner than some think
Answer:
The horizontal distance d does the ball travel before landing is 1.72 m.
Explanation:
Given that,
Height of ramp 
Height of bottom of ramp 
Diameter = 0.17 m
Suppose we need to calculate the horizontal distance d does the ball travel before landing?
We need to calculate the time
Using equation of motion




We need to calculate the velocity of the ball
Using formula of kinetic energy



Using conservation of energy



Put the value into the formula


We need to calculate the horizontal distance d does the ball travel before landing
Using formula of distance

Where. d = distance
t = time
v = velocity
Put the value into the formula


Hence, The horizontal distance d does the ball travel before landing is 1.72 m.
<h2>The hiker will go up to 850 m on the hill</h2>
Explanation:
The total energy gained by the hiker = 140 x 4186 J
This energy is consumed in the potential energy acquired , while climbing up the hill.
The potential energy P.E = mass of hiker x acceleration due to gravity x height
Thus
140 x 4186 = 69 x 10 x h
or h =
= 850 m
If the 20% of the total energy is used
the height h₀ =
= 170 m