Answer:
Impulse = 90
Resulting Velocity = 89
Explanation:
Use F * change in time = m * change in velocity.
For the first part of the question, the left side of the equation is the impulse. Plug it in.
60 * (3.0 - 0) = 90.
For the second half. we use all parts of the equation. I'm gonna use vf for the final velocity.
60 * (3.0 - 0) = 10 * (vf - 80). Simplify.
90 = 10vf - 800. Simplify again.
890 = 10vf. Divide to simplify and get the answer.
The resulting velocity is 89.
Answer:
The speed in the first point is: 4.98m/s
The acceleration is: 1.67m/s^2
The prior distance from the first point is: 7.42m
Explanation:
For part a and b:
We have a system with two equations and two variables.
We have these data:
X = distance = 60m
t = time = 6.0s
Sf = Final speed = 15m/s
And We need to find:
So = Inicial speed
a = aceleration
We are going to use these equation:


We are going to put our data:


With these equation, you can decide a method for solve. In this case, We are going to use an egualiazation method.



![[\sqrt{(15m/s)^2-(2*a*60m)}]^{2}=[15m/s-(a*6s)]^{2}](https://tex.z-dn.net/?f=%5B%5Csqrt%7B%2815m%2Fs%29%5E2-%282%2Aa%2A60m%29%7D%5D%5E%7B2%7D%3D%5B15m%2Fs-%28a%2A6s%29%5D%5E%7B2%7D)








If we analyze the situation, we need to have an aceleretarion greater than cero. We are going to choose a = 1.67m/s^2
After, we are going to determine the speed in the first point:




For part c:
We are going to use:




Answer:
E. The ocean gains more entropy than the iron loses.
Explanation:
When there is a spontaneous process , entropy of the system increases . Here hot iron is losing entropy and ocean is gaining entropy . Net effect will be gain of entropy . That means entropy gained by ocean is more than entropy lost by iron .
Hence option E is correct .
The answer is 96 N .....................................