answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Step2247 [10]
1 year ago
12

A man climbs a ladder. Which two quantities can be used to calculate the energy stored of the man at the top of the ladder.

Physics
1 answer:
Dvinal [7]1 year ago
8 0

Answer:The answer must be The weight of the man and the vertical distance moved.

Explanation: you calculate it by the force you applied times the distance you moved

You might be interested in
As an object in motion becomes heavier, its kinetic energy _____. A. increases exponentially B. decreases exponentially C. incre
diamong [38]

Answer:

USE SOCRACTIC IT WOULD REALLY HELP

4 0
2 years ago
Read 2 more answers
An object can be broken up by a planet's gravity once it passes the _______. The Jovian planets are composed primarily of ______
Rina8888 [55]

Answer:1. Roche limit

2.hydrogen

3.atmosphere

4.mercury

5.venus

6.when an object passes the Roche limit, the strength of gravity on the object increases. If the density of the planet is higher, then the object can break up farther away from the planet. If the density is lower, then the Roche limit is located closer to the planet

7.Farther our in the solar system, beyond the frost line, hydrogen was at a low enough temperature that it could condense. This allowed hydrogen to accumulate under gravity, eventually forming the Jovian planets

Explanation:

3 0
1 year ago
Read 2 more answers
You are riding on a roller coaster that starts from rest at a height of 25.0 m and moves along a frictionless track. however, af
djyliett [7]
I attached the missing picture.
We can figure this one out using the law of conservation of energy.
At point A the car would have potential energy and kinetic energy.
A: mgh_1+\frac{mv_1^2}{2}
Then, while the car is traveling down the track it loses some of its initial energy due to friction:
W_f=F_f\cdot L
So, we know that the car is approaching the point B with the following amount of energy:
mgh_1+\frac{mv_1^2}{2}- F_fL
The law of conservation of energy tells us that this energy must the same as the energy at point B. 
The energy at point B is the sum of car's kinetic and potential energy:
B: mgh_2+\frac{mv_2}{2}
As said before this energy must be the same as the energy of a car approaching the loop:
mgh_2+\frac{mv_2}{2}=mgh_1+\frac{mv_1^2}{2}- F_fL
Now we solve the equation for v_1:
v_1^2=2g(h_2-h_1)+v_2^2+\frac{2F_fL}{m}\\
v_1^2=39.23\\
v_1=\sqrt{39.23}=6.26\frac{m}{s}

4 0
1 year ago
Read 2 more answers
A car travels 500m in 50s, then 1,500m in 75s. Calculate its averages speed for the whole journey
SIZIF [17.4K]

Answer:

15m/s

Explanation:

500 ÷ 50 = 10m/s

1500 ÷ 75 = 20m/s

10 + 20 = 30

30 ÷ 2 = 15m/s

8 0
2 years ago
Read 2 more answers
A physics student with too much free time drops a watermelon from a roof of a building, hears the sound of the watermelon going
tatiyna

Answer:

28.6260196842 m

Explanation:

Let h be the height of the building

t = Time taken by the watermelon to fall to the ground

Time taken to hear the sound is 2.5 seconds

Time taken by the sound to travel the height of the cliff = 2.5-t

Speed of sound in air = 340 m/s

For the watermelon falling

s=ut+\frac{1}{2}at^2\\\Rightarrow h=0t+\frac{1}{2}\times 9.81\times t^2\\\Rightarrow h=\frac{1}{2}\times 9.81\times t^2

For the sound

Distance = Speed × Time

\text{Distance}=340\times (2.5-t)

Here, distance traveled by the stone and sound is equal

\frac{1}{2}\times 9.81\times t^2=340\times (2.5-t)\\\Rightarrow 4.905t^2=340\times (2.5-t)\\\Rightarrow t^2=\frac{340}{4.905}(2.5-t)\\\Rightarrow t^2+69.3170234455t-173.292558614=0

t=\frac{-69.31702\dots +\sqrt{69.31702\dots ^2-4\cdot \:1\cdot \left(-173.29255\dots \right)}}{2\cdot \:1},\:t=\frac{-69.31702\dots -\sqrt{69.31702\dots ^2-4\cdot \:1\cdot \left(-173.29255\dots \right)}}{2\cdot \:1}\\\Rightarrow t=2.4158\ s\ or\ -71\ seconds

The time taken to fall down is 2.4158 seconds

h=\frac{1}{2}\times 9.81\times 2.4158^2=28.6260196842\ m

Height of the buidling is 28.6260196842 m

7 0
2 years ago
Other questions:
  • How are adhesion and cohesion similar? how are they different?
    12·1 answer
  • Two objects of different masses are sitting on different balance scales. Object A has a greater mass than object B. How will the
    10·1 answer
  • A dinner plate falls vertically to the floor and breaks up into three pieces, which slide horizontally along the floor. immediat
    11·2 answers
  • A varying force is given by F=Ae ^-kx, where x is the position;A and I are constants that have units of N and m^-1 , respectivel
    11·1 answer
  • Which of the following statements about electric field lines associated with electric charges is false? Electric field lines can
    12·1 answer
  • A projectile of mass M, initially at rest, is acted upon by a net force [including gravity] that increases quadratically with ti
    8·1 answer
  • If you take any pitch on the keyboard, the next occurrence of the same letter name going towards the left (down) will vibrate:
    10·1 answer
  • Four students were loading boxes of food collected during a food drive. The force that each student exerted while lifting and th
    11·2 answers
  • A 3400 kg jet is flying at a constant speed of 170 m/s as it makes a vertical loop. At the top of the loop the pilot feels three
    8·1 answer
  • 2. Using the solar system data in the
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!