Answer:
a= Vo²/(2X₁)
Fr= mVo²/(2X₁)
Explanation:
Given that
Initial velocity = Vo
As we know that friction always tried to oppose the motion of the object.That is why acceleration due to friction acts opposite to the motion of the object.Lets take acceleration is a.
We also know that
v²=u²+ 2 a s
v=final speed
u=initial speed
a= acceleration
s= distance
Here given that final speed is zero.
So
0²=Vo² - 2 x a x X₁ ( negative sign because acceleration in the opposite to the displacement)
a= Vo²/(2X₁)
So the average friction force Fr
Fr= m a
Fr= mVo²/(2X₁)
Velocity of submarine A is vs = 11.0m/s
frequency emitted by submarine A. F = 55.273 × 10∧3HZ
Velocity of submarine B = vO = 3.00m/s
The given equation is
f' = ((V + vO) ((v - vS)) × f
The observer on submarine detects the frequency f'.
The sign of vO should be positive as the observer of submarine B is moving away from the source of submarine A.
The speed of the sound used in seawater is 1533m/s
The frequency which is detected by submarine B is
fo = fs (V -vO/ v +vs)
= 53.273 × 10∧3hz) ((1533 m/s - 4.5 m/s)/ (1533 m/s +11 m/s)
fo = 5408 HZ
Given that,
Distance in south-west direction = 250 km
Projected angle to east = 60°
East component = ?
since,
cos ∅ = base/hypotenuse
base= hyp * cos ∅
East component = 250 * cos 60°
East component = 125 km
Answer:
6 m/s is the missing final velocity
Explanation:
From the data table we extract that there were two objects (X and Y) that underwent an inelastic collision, moving together after the collision as a new object with mass equal the addition of the two original masses, and a new velocity which is the unknown in the problem).
Object X had a mass of 300 kg, while object Y had a mass of 100 kg.
Object's X initial velocity was positive (let's imagine it on a horizontal axis pointing to the right) of 10 m/s. Object Y had a negative velocity (imagine it as pointing to the left on the horizontal axis) of -6 m/s.
We can solve for the unknown, using conservation of momentum in the collision: Initial total momentum = Final total momentum (where momentum is defined as the product of the mass of the object times its velocity.
In numbers, and calling
the initial momentum of object X and
the initial momentum of object Y, we can derive the total initial momentum of the system: 
Since in the collision there is conservation of the total momentum, this initial quantity should equal the quantity for the final mometum of the stack together system (that has a total mass of 400 kg):
Final momentum of the system: 
We then set the equality of the momenta (total initial equals final) and proceed to solve the equation for the unknown(final velocity of the system):
