Answer:
Snail's speed =
= 0.0125m/s
Turtle's speed =
= 0.1375m/s
Explanation:
Let the snail's speed be x m/s
The turtle's speed then is 11x m/s
Speed = Distance ÷ Time
Since speed and distance are directly proportional;
The ratio of the distances snail and turtle cover before they meet is x:11x respectively.
Simplified, the ratio of snail distance : turtle distance = 1:11
So snail covers a distance of
× 360 = 30m
And turtle covers a distance of
× 360 = 330m
The time each took before they met is 40 × 60 = 2400 seconds
Snail's speed =
= 0.0125m/s
Turtle's speed =
= 0.1375m/s
<span>The answer is mirrors. Mirrors are made by applying a metal thin layer on the back surface of a transparent substrat, typically glass. The metal layer in the antiquity was bronze, mercury and later silver whose luster gave the reflective property to the mirror.</span>
Answer:
Magnitude of impulse, |J| = 4 kg-m/s
Explanation:
It is given that,
Mass of cart 1, 
Mass of cart 2,
Initial speed of cart 1,
Initial speed of cart 2,
(stationary)
The carts stick together. It is the case of inelastic collision. Let V is the combined speed of both carts. The momentum remains conserved.

V = 1 m/s
The magnitude of the impulse exerted by one cart on the other is given by:


J = -4 kg-m/s
or
|J| = 4 kg-m/s
So, the magnitude of the impulse exerted by one cart on the other 4 kg-m/s. Hence, this is required solution.
The correct answer to the question is- 
CALCULATION:
As per the question, the electric field generated by the source charge is 1236 N/C at a distance of 4 m.
Hence , electric field E = 1236 N/C.
The distance of the point R = 4m
We are asked to calculate the charge possessed by the source.
The electric field produced by a source charge of Q at a distance R is calculated as -
Electric field E = 
Here,
is called the absolute permittivity of the free space.
Hence, the charge of source is calculated as -
Q = 
= 
= 
= 
= 
Hence, the charge of source is 
Data:
Centripetal Force = ? (Newton)
m (mass) = 68 Kg
s (speed) = 3.9 m/s
R (radius) = 6.5 m
Formula:

Solving:





Answer:
<span>
B.159 N</span>