<u>Answer</u>:
pairing of the copper which has an electron affinity of 0.34 and the silver which has an electron affinity of 0.80 makes a strong battery.
<u>Explanation</u>:
All the Batteries of this world are made with two metals having different-different electron affinities. What do the phrase “electrons affinities ” mean and how do these affinities affect the voltage of the batteries?
The Electron affinities are the energy change that occurs when electrons are added to atoms. The greater the attraction of the atoms to the electrons the more energy would released. If an atom has high electron affinity, the electron will be harder to gain The greater is the difference in metal affinities, the greater the voltage. That means, if you pair Coppers with Silver, the difference between their electron affinities would be (0.80-0.34) or, 0.46 and You can make a strong battery.
Answer:
Explanation:
The expression for the calculation of the enthalpy change of a process is shown below as:-
Where,
is the enthalpy change
m is the mass
C is the specific heat capacity
is the temperature change
Thus, given that:-
Mass of water = 2.4 kg
Specific heat = 4.18 J/g°C
So,
Heat Supplied 
where 



Answer:
The stars are moving away from us.
Explanation:
The observed wavelengths of hydrogen transition for stars A and B (660.0 nm and 666 nm respectively) are greater than that observed in the laboratory (656.2 nm). The observed long wavelengths for the stars means that the light from the stars is red-shifted.
According to the Doppler effect, red-shifted light means that the source is moving a way from the observer; therefore, we arrive at the conclusion that the stars A and B are moving away from us.
Answer:
61578948 m/s
Explanation:
λ
= λ

687 = 570 
= 61578948 m/s
So Slick Willy was travelling at a speed of 61578948 m/s to observe this.
Recall that in the equilibrium position, the upward force of the spring balances the force of gravity on the weight is given below.
Explanation:
Measure unstretched length of spring, L. E.g. L = 0.60m.
Set mass to a convenient value (e.g. m = 0.5kg).
Hang mass.
Measure new spring length, L'. E.g. L' = 0.70m.
Calculate extension: e = L' - L = 0.70 – 0.60 = 0.10m
Use mg = ke (in equilibrium weight = tension)
k = mg/e
Don't know what value you are using for example. Suppose it is 10N/kg (same thing as 10m/s²).
k = 0.5*10/0.10 = 50 N/m
Repeat for a few different masses. (L always stays the same.)
Take the average of your k values.