Answer:
Our solar system has total eight planets out of which four are inner planets and four are outer planets. The four outer planets are Jupiter, Saturn, Uranus and Neptune. The common characteristics of outer planets is that they are gaseous planets. They are larger on size than the inner rocky planets and are faraway from Sun. They have larger period of revolution around the Sun.
Uranus is a gaseous planet and lies far from Sun and hence has large period of revolution. It takes 84 Earth years to revolve around Sun. This data indicates that Uranus resides in the outer region of the Solar System.
Answer:
9.98 m/s
Explanation:
The force acting on the particle is defined by the equation:
[N]
where x is the position in metres.
The acceleration can be found by using Newton's second law:

where
m = 150 g = 0.150 kg is the mass of the particle. Substituting into the equation,
[m/s^2]
When x = 3.14 m, the acceleration is:

Now we can find the final speed of the particle by using the suvat equation:

where
u = 8.00 m/s is the initial velocity
v is the final velocity

x = 3.14 m is the displacement
Solving for v,

And the speed is just the magnitude of the velocity, so 9.98 m/s.
Answer:

Explanation:
When a pair of medial has greater difference between the their individual refractive indices with respect to vacuum then it has a greater deviation between the refracted ray and the incident ray.
According to the Snell's law:

a)

b)


c)

d)

e)

f)


Time=speed/acceleration
Gravitaional Acceleration=9.8 m/s^2
Speed=24.5 m/s
Time=24.5/9.8=2.5 s
The correct answer is <span>3)

.
</span>
In fact, the total energy of the rock when it <span>leaves the thrower's hand is the sum of the gravitational potential energy U and of the initial kinetic energy K:
</span>

<span>As the rock falls down, its height h from the ground decreases, eventually reaching zero just before hitting the ground. This means that U, the potential energy just before hitting the ground, is zero, and the total final energy is just kinetic energy:
</span>

<span>
But for the law of conservation of energy, the total final energy must be equal to the tinitial energy, so E is always the same. Therefore, the final kinetic energy must be
</span>

<span>
</span>