answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
musickatia [10]
2 years ago
5

61. A physics student has a single-occupancy dorm room. The student has a small refrigerator that runs with a current of 3.00 A

and a voltage of 110 V, a lamp that contains a 100-W bulb, an overhead light with a 60-W bulb, and various other small devices adding up to 3.00 W. (a) Assuming the power plant that supplies 110 V electricity to the dorm is 10 km away and the two aluminum transmission cables use 0-gauge wire with a diameter of 8.252 mm, estimate the percentage of the total power supplied by the power company that is lost in the transmission. (b) What would be the result is the power company delivered the electric power at 110 kV?
Physics
1 answer:
Mademuasel [1]2 years ago
6 0

Answer:

Part a)

percentage = 21.3%

Part b)

percentage = 2.13 \times 10^{-5}%

Explanation:

As we know that total power used in the room is given as

P = P_1 + P_2 + P_3 + P_4

here we have

P_1 = (110)(3) = 330 W

P_2 = 100 W

P_3 = 60 W

P_4 = 3 W

P = 330 + 100 + 60 + 3

P = 493 W

Part a)

Since power supply is at 110 Volt so the current obtained from this supply is given as

110\times i = 493

i = 4.48 A

now resistance of transmission line

R = \frac{\rho L}{A}

R = \frac{(2.8 \times 10^{-8})(10\times 10^3)}{\pi(4.126\times 10^{-3})^2}

R = 5.23 \ohm

now power loss in line is given as

P = i^2 R

P = (4.48)^2(5.23)

P = 105 W

Now percentage loss is given as

percentage = \frac{loss}{supply} \times 100

percentage = \frac{105}{493} \times 100

percentage = 21.3%

Part b)

now same power must have been supplied from the supply station at 110 kV, so we have

110 \times 10^3 (i ) = 493

i = 4.48\times 10^{-3} A

now power loss in line is given as

P = i^2 R

P = (4.48 \times 10^{-3})^2(5.23)

P = 1.05 \times 10^{-4} W

Now percentage loss is given as

percentage = \frac{loss}{supply} \times 100

percentage = \frac{1.05 \times 10^{-4}}{493} \times 100

percentage = 2.13 \times 10^{-5}%

You might be interested in
Which pair of graphs represent the same motion of an object
ASHA 777 [7]
To be able to identify that the object is in the same motion, we should find the graphs that has an increasing slope of displacement and with the constant velocity with varying time. Graphs on letter D satisfies these requirements.

<em>ANSWER: D</em>
6 0
2 years ago
Read 2 more answers
A silver wire 2.6 mm in diameter transfers a charge of 420 Cin 80 min. Silver contains 5.8 x 10^{28} free electrons per cubic me
never [62]

1) Current in the wire: 0.0875 A

The current in the wire is given by:

I=\frac{Q}{t}

where

Q is the charge passing a given point in the conductor

t is the time elapsed

In this problem, we have

Q = 420 C is the total charge passing through a given point in a time of

t = 80 min = 4800 s

So, the current is

I=\frac{420 C}{4800 s}=0.0875 A

2) Drift velocity of the electrons: 1.78\cdot 10^{-6} m/s

The drift velocity of the electrons in the wire is given by:

u = \frac{I}{nAq}

where

I = 0.0875 A is the current

n=5.8\cdot 10^{28} is the number of free electrons per cubic meter

A is the cross-sectional area

q=1.6\cdot 10^{-19} C is the charge of one electron

The radius of the wire is

r=\frac{d}{2}=\frac{2.6 mm}{2}=1.3 mm=0.0013 m

So the cross-sectional area is

A=\pi r^2=\pi (0.0013 m)^2=5.31\cdot 10^{-6} m^2

So, the drift velocity is

u = \frac{(0.0875 A)}{(5.8\cdot 10^{28})(5.31\cdot 10^{-6})(1.6\cdot 10^{-19}C)}=1.78\cdot 10^{-6} m/s

4 0
2 years ago
To make the jump, Neo and Morpheus have pushed against their respective launch points with their legs applying a _____ to the la
ra1l [238]
Force, newtons 3rd law of motion stated for every action there is an equal and opposite reaction
7 0
2 years ago
In general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their component
Dimas [21]

(1) A - B

(2) B - C

(3) - A + B - C

(4) 3A - 2C

(5) - 2A + 3B - C

(6) 2A - 3 (B - C)

Answer:

(1)  (3,-5,-4)

(2) (-5, 4, 0)

(3) (-6, 4, 3)

(4) (-3, -2, -11)

(5) (-11, 14, 8)

(6) (17, -12, -6)

Explanation:

A⃗ =(1,0,−3)

B⃗ =(−2,5,1)

C⃗ =(3,1,1)

Vector additions and subtraction are done on a component by component basis, that is, only data from component î can be added to or subtracted from another Vector's component î. And so on for components j and k.

1) (A - B) = (1,0,−3) - (−2,5,1) = (1-(-2), 0-5, -3-1) = (3,-5,-4)

2)  (B - C) = (−2,5,1) - (3,1,1) = (-2-3, 5-1, 1-1) = (-5, 4, 0)

3) -A + B - C = -(1,0,−3) + (−2,5,1) - (3,1,1) = (-1-2-3, 0+5-1, 3+1-1) = (-6, 4, 3)

4) 3A - 2C = 3(1,0,−3) - 2(3,1,1) = (3,0,-9) - (6,2,2) = (3-6, 0-2, -9-2) = (-3, -2, -11)

5) -2A + 3B - C = -2(1,0,−3) + 3(−2,5,1) - (3,1,1) = (-2,0,6) + (-6,15,3) - (3,1,1) = (-2-6-3, 0+15-1, 6+3-1) = (-11, 14, 8)

6) 2A - 3 (B - C) = 2(1,0,−3) - 3[(−2,5,1) - (3,1,1)] = (2,0,-6) - 3(-5,4,0) = (2+15, 0-12, -6-0) = (17, -12, -6)

3 0
2 years ago
Which of the following statements cannot be supported by Kepler's laws of planetary motion?
gladu [14]

Answer:

The rotational speed of the four smallest planets can be determined using the rotational speeds of the four largest planets and their orbital periods.

Explanation:

Kepler's three laws are:

1) The orbits of the planets around the Sun are ellipses, with the Sun at one of the focii

2) A line connecting the Sun with each planet sweeps out equal areas in equal time intervals

3) The cube of the semi-major axis of the orbit of one planet is proportional to the square of its orbital period

There 3 laws help explaining the following statements:

- <em>A planet's distance from the sun will not be the same in six months. --> </em>using the 1st law. In fact, since the orbit is an ellipse (and not a circle), and the Sun is at one of the focii, the distance of the planet from the Sun keeps changing during the year.

-<em> A planet's speed as it moves around the sun will not be the same in six months. -</em>-> using the 2nd law. In fact, since the line connecting the Sun to the planet must cover equal areas in the same time interval, it follows that the speed of the planet cannot be constant during the year (it will be faster when closer to the sun and slower when far from the sun).

- <em>The average distance of Saturn can be calculated using the average distance of Neptune and the orbital period of both planets. </em>--> using the 3rd law. In fact, the ratio \frac{a^3}{T^2} (where a is the semi-major axis of the orbit and T the orbital period) is constant and it is the same for every planet orbiting the sun, so by knowing the data of Neptune and the orbital period of Saturn, it is possible to calculate Saturn's average distance.

Instead, the following statement:

<em>The rotational speed of the four smallest planets can be determined using the rotational speeds of the four largest planets and their orbital periods.</em>

Is not supported by any Kepler's law.

8 0
2 years ago
Other questions:
  • Elements in group 2 are all called alkaline earth metals. What is most similar about the alkaline earth metals? how many protons
    5·2 answers
  • An airplane is flying at a constant speed in a positive direction. It slows down when it approaches the airport where it's going
    13·1 answer
  • When a light wave enters into a medium of different optical density,
    6·1 answer
  • Why do most objects tend to contain nearly equal numbers of positive and negative charges?
    5·2 answers
  • A 3.5-cm radius hemisphere contains a total charge of 6.6 × 10–7
    14·1 answer
  • Which was the first object made by humans to orbit earth?
    14·1 answer
  • Consider a person standing in an elevator that is moving at constant speed upward. The person, of mass m, has two forces acting
    5·2 answers
  • In a car crash, large accelerations of the head can lead to severe injuries or even death. A driver can probably survive an acce
    14·1 answer
  • . A magnetic field has a magnitude of 0.078 T and is uniform over a circular surface whose radius is 0.10 m. The field is orient
    15·1 answer
  • A rod bent into the arc of a circle subtends an angle 2θ at the center P of the circle (see below). If the rod is charged unifor
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!