Remember your kinematic equations for constant acceleration. One of the equations is

, where

= final position,

= initial position,

= initial velocity, t = time, and a = acceleration.
Your initial position is where you initially were before you braked. That means

= 100m. You final position is where you ended up after t seconds passed, so

= 350m. The time it took you to go from 100m to 350m was t = 8.3s. You initial velocity at the initial position before you braked was

= 60.0 m/s. Knowing these values, plug them into the equation and solve for a, your acceleration:
Your acceleration is approximately
.
Answer:
Explanation:
Given that,
Basket ball is drop from height
H=10m
It is dropped on planet mass
And the acceleration due to gravity on Mars is given as
g= 3.7m/s²
Time taken for the ball to reach the ground
Initial velocity of the body is zero
u=0m/s
Using equation of motion: free fall
H = ut + ½gt²
10 = 0•t + ½ × 3.7 ×t²
10 = 0 + 1.85t²
10 = 1.85t²
Then, t² =10/1.85
t² = 5.405
t = √ 5.405
t = 2.325seconds
So the time the ball spend on the air before reaching the ground is 2.325 seconds
Answer: 
Explanation:

Where;
a = acceleration
V2 = final velocity
V1 = initial velocity
t = time
If John runs 1.0 m/s first, we assume this is V1. He accelerates to 1.6 m/s; this is V2.



Usually, in culturing of the bacteria we have a slant and then portion f it is transferred to the agar plate. The growth characteristics are more useful in the agar plates because it is where we really do the observation because bacteria in slants are still to be transferred in the agar plates.
Answer:
Explanation:
i = Imax sin2πft
given i = 180 , Imax = 200 , f = 50 , t = ?
Put the give values in the equation above
180 = 200 sin 2πft
sin 2πft = .9
sin2π x 50t = .9
sin 360 x 50 t = sin ( 360n + 64 )
360 x 50 t = 360n + 64
360 x 50 t = 64 , ( putting n = 0 for least value of t )
18000 t = 64
t = 3.55 ms .