As we know that

here we know that


now from above equation we have


so image will form on left side of lens at a distance of 15 cm
This image will be magnified and virtual image
Ray diagram is attached below here
Answer:
Explanation:
We shall apply Pascal's Law in fluid mechanics
According to it , pressure is transmitted in liquid from one point to another without any change .
25 cm diameter = 12.5 x 10⁻² m radius
Area = 3.14 x (12.5 x 10⁻²)²
= 490.625 x 10⁻⁴ m²
Pressure by vehicle
Force / area
13000 / 490.625 x 10⁻⁴
= 26.497 x 10⁴ Pa
5 cm diameter = 2.5 x 10⁻² radius
area = 3.14 x (2.5 x 10⁻²)²
= 19.625 x 10⁻⁴ m²
If we assume required force F on this area
Pressure = F / 19.625 x 10⁻⁴ Pa
According to Pascal Law
F / 19.625 x 10⁻⁴ = 26.497 x 10⁴
F = 19.625 x 26.497
= 520 N
Therefore, it can be reasonably concluded according to your
unfinished syllogism, that there are many people who do not
think scientifically.
Answer:
ºC
Explanation:
First, let's write the energy balance over the duct:

It says that the energy that goes out from the duct (which is in enthalpy of the mass flow) must be equals to the energy that enters in the same way plus the heat that is added to the air. Decompose the enthalpies to the mass flow and specific enthalpies:

The enthalpy change can be calculated as Cp multiplied by the difference of temperature because it is supposed that the pressure drop is not significant.

So, let's isolate
:

The Cp of the air at 27ºC is 1007
(Taken from Keenan, Chao, Keyes, “Gas Tables”, Wiley, 1985.); and the only two unknown are
and Q.
Q can be found knowing that the heat flux is 600W/m2, which is a rate of heat to transfer area; so if we know the transfer area, we could know the heat added.
The heat transfer area is the inner surface area of the duct, which can be found as the perimeter of the cross section multiplied by the length of the duct:
Perimeter:

Surface area:

Then, the heat Q is:

Finally, find the exit temperature:

=27.0000077 ºC
The temperature change so little because:
- The mass flow is so big compared to the heat flux.
- The transfer area is so little, a bigger length would be required.
Answer: The power is 156 watt
Explanation:
is in the attachment