First, before determining which variable is which, we go over the definition of each.
The independent variable is the one which is intentionally changed in order to investigate its effect on the dependent variable.
The dependent variable is monitored and changes occur in it due to the changing conditions of the independent variable.
In this case, the location of the African violets is the independent variable as it is intentionally changed, while the rate of growth of the African violets is the dependent variable as it is being measured.
Time before projectile hits wall
= 88.2 m / 29.4 m/s = 3 seconds
Vertical velocity of projectile after three seconds
= 3*9.8 = 29.4 m/s
Horizontal velocity of projectile after three seconds, assuming no air resistance
= 29.4 m/s (given)
Conclusion:
velocity of projectile when it hits the wall
= < 29.4, -29.4> m/s
= sqrt(29.4^2+29.4^2) m/s east-bound at 45 degrees below horizontal
= 41.58 m/s east-bound at 45 degrees below horizontal.
Either theory or evidence
You can write an hypothesis such as this:
The weight of an object has effects on the operating frictional force, the greater the weight, the higher the operating frictional force.
The father is the one with the higher weight while the son has the lower weight. The operating frictional force is the friction that their weights exert.
Answer:
a) V = 1.866 10² V
, b) V = 3.424 10⁵ V
, c) v = 8.1 10⁶ m / s
Explanation:
a) the potential difference is requested to accelerate the electrons up to 2.7% of the speed of light
v = 0.027 c
v = 0.027 3 10⁸
v = 8.1 10⁶ m / s
for this part we can use the conservation of mechanical energy
starting point. When electrons are at rest
Em₀ = U = q V
final point. Electrons with maximum speed
Em_f = K = ½ m v2
Em₀ = Em_{f}
e V = ½ m v²
V = ½ m v² / e
let's calculate
V = ½ 9.1 10⁻³¹ (8.1 10⁶)² / 1.6 10⁻¹⁹
V = 1.866 10² V
V = 1866 V
b) if this acceleration protons is the mass of the proton is m_{p} = 1.67 10-27
V = ½ 1.67 10⁻²⁷ (8.1 10⁶)² / 1.6 10⁻¹⁹
V = 3.424 10⁵ V
V = 342402 V
c)
this potential difference should give the protons the same speed as the electrons
v = 8.1 10⁶ m / s