Answer:
N=119.34 turns
Explanation:
The magnetic field of a solenoid is calculated using the formula:
B= µo*
Equation 1
Where:
B: magnetic field in Teslas (T)
µo: free space permeability in T*m/A
I= Intensity of the current flowing through the conductor in ampere (A)
N= number of turns
L= solenoid length in meters (m)
Data of the problem:
L=10cm=
, B= 1.5mT=
,I=1A
µo=
We cleared N of the equation (1):
N=B*L/ µo*I
N=


Answer
N=119.34 turns
<h3><u>Answer;</u></h3>
= 1.256 m
<h3><u>Explanation;</u></h3>
We can start by finding the spring constant
F = k*y
Therefore; k = F/y = m*g/y
= 0.40kg*9.8m/s^2/(0.76 - 0.41)
= 11.2 N/m
Energy is conserved
Let A be the maximum displacement
Therefore; 1/2*k*A^2 = 1/2*k*(1.20 - 0.41)^2 + 1/2*m*v^2
Thus; A = sqrt((1.20 - 0.55)^2 + m/k*v^2)
= sqrt((1.20 -0.55)^2 + 0.40/9.8*1.6^2)
= 0.846 m
Thus; the length will be 0.41 + 0.846 = 1.256 m
Alpha brain waves are those most conducive to studying new information.
When consciously alert, we generally function along a beta brain rhythm. In diminishing this rhythm to alpha, we transition into a state of physical and mental relaxation that is ideal for learning new information and storing facts and data. Studies have shown that the effect of decreasing brain rhythm is linked to feelings of increased mental clarity and remembrance. As it is a prime condition for synthetic thought and creativity, it becomes easier to visualize and create associations (information is better learned and absorbed by using such study methods).
Hope this helps! :)
Answer:
Flow Rate = 80 m^3 /hours (Rounded to the nearest whole number)
Explanation:
Given
- Hf = head loss
- f = friction factor
- L = Length of the pipe = 360 m
- V = Flow velocity, m/s
- D = Pipe diameter = 0.12 m
- g = Gravitational acceleration, m/s^2
- Re = Reynolds's Number
- rho = Density =998 kg/m^3
- μ = Viscosity = 0.001 kg/m-s
- Z = Elevation Difference = 60 m
Calculations
Moody friction loss in the pipe = Hf = (f*L*V^2)/(2*D*g)
The energy equation for this system will be,
Hp = Z + Hf
The other three equations to solve the above equations are:
Re = (rho*V*D)/ μ
Flow Rate, Q = V*(pi/4)*D^2
Power = 15000 W = rho*g*Q*Hp
1/f^0.5 = 2*log ((Re*f^0.5)/2.51)
We can iterate the 5 equations to find f and solve them to find the values of:
Re = 235000
f = 0.015
V = 1.97 m/s
And use them to find the flow rate,
Q = V*(pi/4)*D^2
Q = (1.97)*(pi/4)*(0.12)^2 = 0.022 m^3/s = 80 m^3 /hours
Answer:
Explanation:
Since the roundabout is rotating with uniform velocity ,
input power = frictional power
frictional power = 2.5 kW
frictional torque x angular velocity = 2.5 kW
frictional torque x .47 = 2.5 kW
frictional torque = 2.5 / .47 kN .m
= 5.32 kN . m
= 5 kN.m
b )
When power is switched off , it will decelerate because of frictional torque .