Answer:
<h2>9.375Nm</h2>
Explanation:
The formula for calculating torque τ = Frsin∅ where;
F = applied force (in newton)
r = radius (in metres)
∅ = angle that the force made with the bar.
Given F= 25N, r = 0.75m and ∅ = 30°
torque on the bar τ = 25*0.75*sin30°
τ = 25*0.75*0.5
τ = 9.375Nm
The torque on the bar is 9.375Nm
Answer:2.53*10^-10F
Explanation:
C=£o£r*A/d
Where £ is the permitivity of a constant
£o= 8.85*10^-12f/m
£r=6.3
A=150mm^2=0.015m^2
d=3.3mm= 0.0033m
C=8.85*10^-12*6.3*0.015/0.0033
C=8.85*6.3*10^-12*0.015/0.0033
C=55.755*0.015^-12/0.003
C=8.36/3.3*10^-13+3
C=2.53*10^-10F
Answer:
The elastic potential energy is zero.
The net force acting on the spring is zero.
Explanation:
The equilibrium position of a spring is the position that the spring has when its neither compressed nor stretched - it is also called natural length of the spring.
Let's now analyze the different statements:
The spring constant is zero. --> false. The spring constant is never zero.
The elastic potential energy is at a maximum --> false. The elastic potential energy of a spring is given by

where k is the spring constant and x the displacement. Therefore, the elastic potential energy is maximum when x, the displacement, is maximum.
The elastic potential energy is zero. --> true. As we saw from the equation above, the elastic potential energy is zero when the displacement is zero (at the equilibrium position).
The displacement of the spring is at a maxi
num --> false, for what we said above
The net force acting on the spring is zero. --> true, as the spring is neither compressed nor stretched
Answer: 
Explanation:
In the image attached with this answer are shown the given options from which only one is correct.
The correct expression is:

Because, if we derive velocity
with respect to time
we will have acceleration
, hence:

Where
is the mass with units of kilograms (
) and
with units of meter per square seconds
, having as a result 
The other expressions are incorrect, let’s prove it:
This result has units of
This result has units of
This result has units of
and
is a constant
This result has units of
This result has units of
This result has units of
and
is a constant
This result has units of
and
is a constant
because
is a constant in this derivation respect to
This result has units of
and
is a constant