Answer:
Spring constant, k = 0.3 N/m
Explanation:
It is given that,
Force acting on DNA molecule, 
The molecule got stretched by 5 nm, 
Let k is the spring constant of that DNA molecule. It can be calculated using the Hooke's law. It says that the force acting on the spring is directly proportional to the distance as :



k = 0.3 N/m
So, the spring constant of the DNA molecule is 0.3 N/m. Hence, this is the required solution.
S=56, u=0, v=33, a=?, t=3.4
v=u+at
33=3.4 a
a = 9.7m/s^2
B. The sound of the engine will get louder and the pitch higher.
Answer:
3100 m/s
Explanation:
The relationship between frequency and wavelength of a wave is given by the wave equation:

where
v is the speed of the wave
f is its frequency
is the wavelength
For the wave in this problem,
f = 15,500 Hz

Therefore, the wave speed is

Answer:
λ = 3.2 x 10⁻⁷ m = 320 nm
Explanation:
The relationship between the velocity of electromagnetic waves (UV rays) and the their frequency is:
v = fλ
where,
v = c = speed of the electromagnetic waves (UV rays) = speed of light
c = 3 x 10⁸ m/s
f = frequency of the electromagnetic waves (UV rays) = 9.38 x 10¹⁴ Hz
λ = wavelength of the electromagnetic waves (UV rays) = ?
Therefore, substituting the values in the relation, we get:
3 x 10⁸ m/s = (9.38 x 10¹⁴ Hz)(λ)
λ = (3 x 10⁸ m/s)/(9.38 x 10¹⁴ Hz)
<u>λ = 3.2 x 10⁻⁷ m = 320 nm</u>
So, the radiation of <u>320 nm</u> wavelength is absorbed by Ozone.