Recall that in the equilibrium position, the upward force of the spring balances the force of gravity on the weight is given below.
Explanation:
Measure unstretched length of spring, L. E.g. L = 0.60m.
Set mass to a convenient value (e.g. m = 0.5kg).
Hang mass.
Measure new spring length, L'. E.g. L' = 0.70m.
Calculate extension: e = L' - L = 0.70 – 0.60 = 0.10m
Use mg = ke (in equilibrium weight = tension)
k = mg/e
Don't know what value you are using for example. Suppose it is 10N/kg (same thing as 10m/s²).
k = 0.5*10/0.10 = 50 N/m
Repeat for a few different masses. (L always stays the same.)
Take the average of your k values.
Answer:
Explanation:
Small grains are negatively charged by the wind while big grains is positively charged and remains at the ground . This process creates an electric field due to the presence of oppositely charged particles.
When ever electric field exists it is directed from a positive charge to a negative charge so the here electric field is towards an upwards direction.
Answer:

Explanation:
It is given that,
Mass of the puck, m = 4.8 kg
Initial velocity of the puck, 
After 8 seconds, final velocity of the puck, 
Let the x and y component of force is given by
.
x component of force is given by :


y component of force is given by :


So, the component of the force is
. Hence, this is the required solution.
<span>θ=0.3sin(4t)
w=0.3cost(4t)(4)=1.2cost(4t)
a=-4.8sin(4t)
cos4t max will always be 1 (refer to cos graph), for same reason, sin4t will always be 0
therefore, wmax=1.2rad/s
vAmax=r*w=250*1.2=300mm/s
(may be different if your picture/radius is from a different picture)
adt=a*r=200*-4.8sin(4t)=0 (sin(4t)=0)
adn=r*w^2=200*1.2^2=288
ad= square root of adt^2+adn^2 = 288mm/s^2</span>
Answer:
71nC is the total charge of the rod
Explanation:
See attached file