answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valentina_108 [34]
2 years ago
11

The circuit below represents four resistors connected to a 12-volt source. What is the total current in the circuit? 4.0Ω 6.0Ω 1

2 V, 8.0Ω 6.0Ω

Physics
2 answers:
Tpy6a [65]2 years ago
8 0

Answer:

For series connected resistors I = 0.5A

For parallel connected resistors I = 8.5A

Explanation:

Since the diagram is not available, our solution will be divided into two;

According to ohm's law which states that "the current passing through a,metallic conductor at constant temperature is directly proportional to the potential difference across its ends. Mathematically, E = IRt where;

E is the electromotive force

I is the total current in the circuit

Rt is total equivalent resistance.

Where E = 12volts

Rt can be gotten depending on the arrangements of the resistors which can either be in series or parallel.

If the resistors are in series, their equivalent resistance gives;

Rt = 4.0Ω+6Ω+8Ω+6Ω

Rt = 24Ω

The current I will be;

I = E/Rt = 12/24

I = 0.5A

If the connection is in series, the total current in the circuit will be 0.5A.

For resistance in parallel;

1/Rt = 1/4Ω+1/6Ω+1/8Ω+1/6Ω

1/Rt = 6+4+3+4/24

1/Rt = 17/24

Rt = 24/17Ω

I = E/Rt

I = 12/(24/17)

I = 12×17/24

I = 8.5A

If the connection is in parallel, the total current in the circuit will be 8.5A

jekas [21]2 years ago
6 0

Explanation:

Below are attachments to the question and answer to the incomplete question.

You might be interested in
You may have noticed runaway truck lanes while driving in the mountains. These gravel-filled lanes are designed to stop trucks t
Sladkaya [172]

Answer:

0.767

Explanation:

The work done on the truck by the frictional drag force is given by

W=-Fd

where

F is the magnitude of the frictional force

d = 38.0 m is the maximum displacement allowed for the truck

The negative sign is due to the fact that the force of friction is opposite to the motion of the truck

The force of friction can also be written as:

F=\mu mg

where

\mu is the coefficient of kinetic friction between the truck and the lane

m is the mass of the truck

g is the acceleration of gravity

So we can rewrite the work done as

W=-\mu mg d (1)

According to the work-energy theorem, the work done by friction is equal to the change in kinetic energy of the truck:

W=K_f - K_i = \frac{1}{2}mv^2-\frac{1}{2}mu^2 (2)

where

v = 0 is the final velocity of the truck

u = 23.9 m/s is the initial velocity of the truck

By combining (1) and (2) we get

-\frac{1}{2}mu^2 = -\mu mg d

And solving for \mu, we find the minimum coefficient of kinetic friction able to stop the truck in a distance d:

\mu = \frac{u^2}{2gd}=\frac{23.9^2}{2(9.8)(38.0)}=0.767

7 0
2 years ago
A steel cable lifting a heavy box stretches by ΔL . In order for the cable to stretch by only half of ΔL , by about what factor
il63 [147K]

Answer:

2.0

Explanation:

because I'm a geek and ik

6 0
2 years ago
Draw the vector C⃗ =1.5A⃗ −3B⃗ . The length and orientation of the vector will be graded. The location of the vector is not impo
Nutka1998 [239]
I made the drawing in the attached file.

I included two figures.

The upper figure shows the effect of:

- multiplying vector A times 1.5.
 It is drawn in red with dotted line.

- multiplying vector B times - 3 .
It is drawn in purple with dotted line.

In the lower figure you have the resultant vector: C = 1.5A - 3B.

The method is that you translate the tail of the vector -3B unitl the point of the vector 1,5A, preserving the angles.

Then you draw the arrow that joins the tail of 1,5A with the point of -3B after translation.

The resultant arrow is the vector C and it is drawn in black dotted line.
 
Download pdf
7 0
2 years ago
Read 2 more answers
(a) A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion betwe
castortr0y [4]

Answer:

(a) coefficient of friction = 0.451

This was calculated by the application of energy conservation principle (the total sum of energy in a closed system is conserved)

(b) No, it comes to a stop 5.35m short of point B. This is so because the spring on expanding only does a work of 43 J on the block which is not enough to meet up the workdone of 398 J against friction.

Explanation:

The detailed step by step solution to this problems can be found in the attachment below. The solution for part (a) was divided into two: the motion of the body from point A to point B and from point B to point C. The total energy in the system is gotten from the initial gravitational potential energy. This energy becomes transformed into the work done against friction and the work done in compression the spring. A work of 398J was done in overcoming friction over a distance of 6.00m. The energy used in doing so is lost as friction is not a conservative force. This leaves only 43J of energy which compresses the spring. On expansion the spring does a work of 43J back on the block is only enough to push it over a distance of 0.65m stopping short of 5.35m from point B.

Thank you for reading and I hope this is helpful to you.

4 0
2 years ago
If the voltage amplitude across an 8.50-nF capacitor is equal to 12.0 V when the current amplitude through it is 3.33 mA, the fr
Dmitriy789 [7]

Answer:

Frequency will be equal to 5.20 kHz

So option (c) will be correct answer

Explanation:

We have given value of capacitance C=8.5nF=8.5\times 10^{-9}f

Potential difference across capacitor V = 12 volt

Current through capacitor i=3.33mA=3.33\times 10^{-3}A

Capacitive reactance will be equal to X_c=\frac{V}{i}=\frac{12}{3.33\times 10^{-3}A}=3603.60ohm

Capacitive reactance is equal to X_c=\frac{1}{\omega C}

3603.60=\frac{1}{\omega\times  8.5\times 10^{-9}}

\omega =32647.091rad/sec

2\pi f=32647.091

f=5198.98Hz

f = 5.20 kHz

So frequency will be equal to 5.20 kHz

So option (c) will be correct answer

3 0
2 years ago
Other questions:
  • A glider moving with a speed of 200 kilometers/hour experiences a cross wind of 30 kilometers/hour. What is the resultant speed
    5·1 answer
  • A very long, straight horizontal wire carries a current such that 8.15×1018 electrons per second pass any given point going from
    5·2 answers
  • Frequency is deoted as hertz; hertz is a measurement of the _________ _____ __________ that a wave is occurring.
    13·1 answer
  • Write a hypothesis about the effect of increasing voltage on the current in the circuit. Use the "if . . . then . . . because .
    10·2 answers
  • Jin walked 4 km on a straight path to get to the sandwich shop. He traveled 30° south of east.
    10·2 answers
  • Spacecraft have been sent to Mars in recent years. Mars is smaller than Earth and has correspondingly weaker surface gravity. On
    7·1 answer
  • A wire of 5.8m long, 2mm diameter carries 750ma current when 22mv potential difference is applied at its ends. if drift speed of
    10·2 answers
  • Ben walks 500 meters from his house to the corner store. He then walks back toward his house, but continues 200 meters past his
    15·1 answer
  • Henrietta is going off to her physics class, jogging down the sidewalk at a speed of 4.15 m/s . Her husband Bruce suddenly reali
    6·1 answer
  • Place a small object on the number line below at the position marked zero. Draw a circle around the object. Mark the center of t
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!