answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nataly [62]
2 years ago
7

15 PLEASE HELP

Physics
1 answer:
sashaice [31]2 years ago
6 0

Answer:

Ok, her position changed over time since the road is curved.

The velocity changed since the direction is changing

AccelerTion: theres a change in velocity since the direction changes

Direction: changed over time

Displacement : difference between 1st and final position

Explanation:

You might be interested in
A projectile of mass m is fired horizontally with an initial speed of v0​ from a height of h above a flat, desert surface. Negle
Grace [21]

Complete question is;

A projectile of mass m is fired horizontally with an initial speed of v0 from a height of h above a flat, desert surface. Neglecting air friction, at the instant before the projectile hits the ground, find the following in terms of m, v0, h and g:

(a) the work done by the force of gravity on the projectile,

(b) the change in kinetic energy of the projectile since it was fired, and

(c) the final kinetic energy of the projectile.

(d) Are any of the answers changed if the initial angle is changed?

Answer:

A) W = mgh

B) ΔKE = mgh

C) K2 = mgh + ½mv_o²

D) No they wouldn't change

Explanation:

We are expressing in terms of m, v0​, h, and g. They are;

m is mass

v0 is initial velocity

h is height of projectile fired

g is acceleration due to gravity

A) Now, the formula for workdone by force of gravity on projectile is;

W = F × h

Now, Force(F) can be expressed as mg since it is force of gravity.

Thus; W = mgh

Now, there is no mention of any angles of being fired because we are just told it was fired horizontally.

Therefore, even if the angle is changed, workdone will not change because the equation doesn't depend on the angle.

B) Change in kinetic energy is simply;

ΔKE = K2 - K1

Where K2 is final kinetic energy and K1 is initial kinetic energy.

However, from conservation of energy, we now that change in kinetic energy = change in potential energy.

Thus;

ΔKE = ΔPE

ΔPE = U2 - U1

U2 is final potential energy = mgh

U1 is initial potential energy = mg(0) = 0. 0 was used as h because at initial point no height had been covered.

Thus;

ΔKE = ΔPE = mgh

Again like a above, the change in kinetic energy will not change because the equation doesn't depend on the angle.

C) As seen in B above,

ΔKE = ΔPE

Thus;

½mv² - ½mv_o² = mgh

Where final kinetic energy, K2 = ½mv²

And initial kinetic energy = ½mv_o²

Thus;

K2 = mgh + ½mv_o²

Similar to a and B above, this will not change even if initial angle is changed

D) All of the answers wouldn't change because their equations don't depend on the angle.

5 0
2 years ago
A man attempts to pick up his suitcase of weight w_s by pulling straight up on the handle. (Part A figure) However, he is unable
alexira [117]

Answer:

Part A. The magnitude of the normal force is equal to the magnitude of the weight of the suitcase minus the magnitude of the force of the pull.

Part B. The magnitude of normal force acting on the suitcase is equal to the sum of the weight of the suitcase and the man.

Explanation:

Part A. This is because when the man pulls on the suit upwards, he exerts a force in the upward direction. This takes part of the force of weight of the suitcase and decreases the force the suitcase is exerting on the ground. Thus, the normal force (force exerted by suitcase on the ground) also decreases by the same force as the pull.

Part B. The statements for this part were not given in the question, but the answer reflects what is going to happen in that scenario. Since the man sits on the suitcase, the total weight acting on the ground through the suitcase is that of the suitcase plus the man. Since this force (acting on the ground) is normal force, the statement given in the answer is correct.

8 0
2 years ago
"What will the pressure inside the container become if the piston is moved to the 1.60 L mark while the temperature of the gas i
asambeis [7]

This question is incomplete, the complete question is;

The Figure shows a container that is sealed at the top by a moveable piston, Inside the container is an ideal gas at 1.00 atm. 20.0°C and 1.00 L.

"What will the pressure inside the container become if the piston is moved to the 1.60 L mark while the temperature of the gas is kept constant?"

Answer:

the pressure inside the container become 0.625 atm if the piston is moved to the 1.60 L mark while the temperature of the gas is kept constant

Explanation:

Given that;

P₁ = 1.00 atm

P₂ = ?

V₁ = 1 L

V₂ = 1.60 L

the temperature of the gas is kept constant

we know that;

P₁V₁ = P₂V₂

so we substitute

1 × 1 = P₂ × 1.60

P₂ = 1 / 1.60

P₂ = 0.625 atm

Therefore the pressure inside the container become 0.625 atm if the piston is moved to the 1.60 L mark while the temperature of the gas is kept constant

5 0
2 years ago
A rod of mass M = 2.95 kg and length L can rotate about a hinge at its left end and is initially at rest. A putty ball of mass m
madam [21]

Answer:

Explanation:

angular momentum of the putty about the point of rotation

= mvR   where m is mass , v is velocity of the putty and R is perpendicular distance between line of velocity and point of rotation .

= .045 x 4.23 x 2/3 x .95 cos46

= .0837 units

moment of inertia of rod = ml² / 3 , m is mass of rod and l is length

= 2.95 x .95² / 3

I₁ = .8874 units

moment of inertia of rod + putty

I₁ + mr²

m is mass of putty and r is distance where it sticks

I₂  = .8874 + .045 x (2 x .95 / 3)²

I₂ = .905

Applying conservation of angular momentum

angular momentum of putty = final angular momentum of rod+ putty

.0837 = .905 ω

ω is final angular velocity of rod + putty

ω = .092 rad /s .

4 0
2 years ago
Let’s consider tunneling of an electron outside of a potential well. The formula for the transmission coefficient is T \simeq e^
ioda

Answer:

L' = 1.231L

Explanation:

The transmission coefficient, in a tunneling process in which an electron is involved, can be approximated to the following expression:

T \approx e^{-2CL}

L: width of the barrier

C: constant that includes particle energy and barrier height

You have that the transmission coefficient for a specific value of L is T = 0.050. Furthermore, you have that for a new value of the width of the barrier, let's say, L', the value of the transmission coefficient is T'=0.025.

To find the new value of the L' you can write down both situation for T and T', as in the following:

0.050=e^{-2CL}\ \ \ \ (1)\\\\0.025=e^{-2CL'}\ \ \ \ (2)

Next, by properties of logarithms, you can apply Ln to both equations (1) and (2):

ln(0.050)=ln(e^{-2CL})=-2CL\ \ \ \ (3)\\\\ln(0.025)=ln(e^{-2CL'})=-2CL'\ \ \ \ (4)

Next, you divide the equation (3) into (4), and finally, you solve for L':

\frac{ln(0.050)}{ln(0.025)}=\frac{-2CL}{-2CL'}=\frac{L}{L'}\\\\0.812=\frac{L}{L'}\\\\L'=\frac{L}{0.812}=1.231L

hence, when the trnasmission coeeficient has changes to a values of 0.025, the new width of the barrier L' is 1.231 L

8 0
1 year ago
Other questions:
  • Myth: An organism's kingdom only describes physical characteristics. <br> Fact:<br> Evidence:
    14·1 answer
  • A small lead ball, attached to a 1.25-m rope, is being whirled in a circle that lies in the vertical plane. The ball is whirled
    8·1 answer
  • Nicki rides her bike at a constant speed for 6 km. That part of her ride takes her 1 h. She then rides her bike at a constant sp
    8·1 answer
  • A coffee cup on the horizontal dashboard of a car slides forward when the driver decelerates from 45 kmh to rest in 3.5 s or les
    10·1 answer
  • A student is collecting the gas given off from a plant in bright sunlight at a temperature of 27°c. The gas being collected is p
    7·1 answer
  • A ceiling fan has five blades, each with a mass of 0.34 kg and a length of 0.66 m. The fan is operating in its "low" setting at
    6·1 answer
  • In the sport of curling, large smooth stones are slid across an ice court to land on a target. Sometimes the stones need to move
    12·1 answer
  • Which statement about energy conservation BEST explains why a bouncing basketball will not remain in motion forever?
    12·1 answer
  • A jet transport with a landing speed of 200 km/h reduces its speed to 60 km/h with a negative thrust R from its jet thrust rever
    8·1 answer
  • A hot–air balloon is moving at a speed of 10.0 meters/second in the +x–direction. The balloonist throws a brass ball in the +x–d
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!