(a) 
The radiation pressure exerted by an electromagnetic wave on a surface that totally absorbs the radiation is given by

where
I is the intensity of the wave
c is the speed of light
In this problem,

and substituting
, we find the radiation pressure

(b) 
Since we know the cross-sectional area of the laser beam:

starting from the radiation pressure found at point (a), we can calculate the force exerted on a tritium atom:

And then, since we know the mass of the atom

we can find the acceleration, by using Newton's second law:

Answer:
2 x 10⁻³ volts
Explanation:
B = magnetic of magnetic field parallel to the axis of loop = 1 T
= rate of change of area of the loop = 20 cm²/s = 20 x 10⁻⁴ m²
θ = Angle of the magnetic field with the area vector = 0
E = emf induced in the loop
Induced emf is given as
E = B
E = (1) (20 x 10⁻⁴ )
E = 2 x 10⁻³ volts
E = 2 mV
Answer:
pu = 1260.9kg/m^3
the density of the unknown liquid is 1260.9kg/m^3
Explanation:
The density of a liquid is inversely proportional to the volume (height) of object submerged in it.
High density liquid possess higher buoyant force preventing objects from submerging.
p ∝ 1/V ∝ 1/h
since V = Ah
pu/pw = hw/hu
pu = pwhw/hu
Where;
p = density
h = height submerged
pu and pw is the density of unknown liquid and water respectively
hu and hw is the height of object submerged in unknown liquid and water respectively
pw = 1000kg/m^3
hu = 4.6cm = 0.046m
hw = 5.8cm = 0.058m
Substituting the given values;
pu = 1000×0.058/0.046
pu = 1260.9kg/m^3
the density of the unknown liquid is 1260.9kg/m^3
Hublle Space Telescope
- Orbits around Earth.
- Receive light before it enters Earth's Atmosphere.
- Get information about stars before they are born.
Alma Radio Telescope
- Installed on land.
- Receive light after it passes through Earth's Atmosphere.
- Get information about stars after they are born.
Any kind of frequency, including the angular kind, is closely involved with
time. Still, for some unknown reason,you've given us no time information
whatsoever ... a peculiar decision on your part, since we can be sure that
it's right there, inexorably intertwined with the part of the question that you
DID copy and share with us.
Furthermore and moreover, for one with no prior experience with simple
harmonic motion, the many symbols in this question such as ' d ', ' a ',
' << ', ' d₂ ', and ' a₂ ' would be of no help at all to guide him toward a
solution. On the contrary, he would conclude that the question itself
had been posted by some alien life form.
To sum up: Come back and post the drawing that goes along with the
question, make sure you have presented all of the information that the
question includes, and then we'll talk.