Answer:
r = 71.8⁰
Explanation:
given,
refractive index of the glass 1 = 1.70
refractive index of glass 2 = 1.58
angle of incidence = 62°
angle of refraction =?
using Snell's law


1.7 ×sin 62 ^0 = 1.58× sin r

sin r = 0.95
r = sin⁻¹(0.95)
r = 71.8⁰
angle of refraction =r = 71.8⁰
Answer:
The distance of separation is 
Explanation:
The mass of the each ball is 
The negative charge on each ball is 
Now we are told that the lower ball is restrained from moving this implies that the net force acting on it is zero
Hence the gravitational force acting on the lower ball is equivalent to the electrostatic force i.e

=> 
here k the the coulomb's constant with a value 
So
![0.01 * 9.8 = \frac{ 9*10^9 *[1*10^{-6} * 1*10^{-6}]}{d}](https://tex.z-dn.net/?f=0.01%20%2A%209.8%20%20%3D%20%20%5Cfrac%7B%209%2A10%5E9%20%2A%5B1%2A10%5E%7B-6%7D%20%2A%201%2A10%5E%7B-6%7D%5D%7D%7Bd%7D)

Answer:
60.8 cm²
Explanation:
The charge density, σ on the surface is σ = Q/A where q = charge = 87.6 pC = 87.6 × 10⁻¹² C and A = area = 65.2 cm² = 65.2 × 10⁻⁴ m².
σ = Q/A = 87.6 × 10⁻¹² C/65.2 × 10⁻⁴ m² = 1.34 × 10⁻⁸ C/m²
Now, the charge through the Gaussian surface is q = σA' where A' is the charge in the Gaussian surface.
Since the flux, Ф = 9.20 Nm²/C and Ф = q/ε₀ for a closed Gaussian surface
So, q = ε₀Ф = σA'
ε₀Ф = σA'
making A' the area of the Gaussian surface the subject of the formula, we have
A' = ε₀Ф/σ
A' = 8.854 × 10⁻¹² F/m × 9.20 Nm²/C ÷ 1.34 × 10⁻⁸ C/m²
A' = 81.4568/1.34 × 10⁻⁴ m²
A' = 60.79 × 10⁻⁴ m²
A' ≅ 60.8 cm²
Answer:
the expression of current in the loop enclosed to the left of the capacitor plate is

Explanation:
As we know by Ampere's law that line integral of magnetic field around a closed loop is proportional to the current enclosed in the path
So we will have

so we have

so above is the expression of current in the loop enclosed to the left of the capacitor plate